精英家教网 > 高中数学 > 题目详情

【题目】假设某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

试求:(1)y与x之间的回归方程;

(2)当使用年限为10年时,估计维修费用是多少?

【答案】(1) (2)12.38万元

【解析】(1)根据表中数据作散点图,如图所示:

从散点图可以看出,样本点都集中分布在一条直线附近,因此y与x之间具有线性相关关系.利用题中数据得:

(2+3+4+5+6)=4,

(2.2+3.8+5.5+6.5+7.0)=5,

2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3,

=22+32+42+52+62=90,

所以

线性回归方程为.

(2)当x=10时,=1.23×10+0.08=12.38(万元),即当使用10年时,估计维修费用是12.38万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆的左、右焦点分别为右顶点为,上顶点为, 成等比数列,椭圆上的点到焦点的最短距离为

1求椭圆的标准方程;

2为直线上任意一点,过的直线交椭圆于点,且,求的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆

I求椭圆的方程;

II设动直线与椭圆有且仅有一个公共点,判断是否存在以原点为圆心的圆,满足此圆与相交于两点两点均不在坐标轴上,且使得直线的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市100户居民的月平均用电量(单位:度)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如下图示.

(Ⅰ)求直方图中x的值;

(Ⅱ)求月平均用电量的众数和中位数;

(Ⅲ)在月平均用电量为[220,240),[240,260),[260,280)的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在[220,240)的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

I)若,且时,的最小值是-2,求实数的值;

II)若,且时,有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当求函数在区间上的最大值与最小值

(2)若在上存在使得成立的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公司从某大学招收毕业生,经过综合测试,录用了名男生和名女生,这名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在分以上者到甲部门工作;分以下者到乙部门工作,另外只有成绩高于分才能担任助理工作

(1)如果用分层抽样的方法从甲部门人选和乙部门人选中选取人,再从这人中选人,那么至少有一人是甲部门人选的概率是多少?

(2)若从所有甲部门人选中随机选人,用表示所选人员中能担任助理工作的男生人数,写出的分布列,并求出的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用单位:万元与隔热层厚度单位:cm满足关系,若不建隔热层,每年能源消耗费用为8万元,设为隔热层建造费用与20年的能源消耗费用之和.

1的值及的表达式;

2隔热层修建多厚时,总费用达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1时,证明:在定义域上为减函数;

2时,讨论函数的零点情况.

查看答案和解析>>

同步练习册答案