精英家教网 > 高中数学 > 题目详情
15.设等差数列{an}的前n项和为Sn,a2=4,S5=30
(1)求数列{an}的通项公式an
(2)设数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和为Tn,求证:$\frac{1}{8}$≤Tn<$\frac{1}{4}$.

分析 (1)设等差数列{an}的公差为d,由a2=4,S5=30,可得$\left\{\begin{array}{l}{{a}_{1}+d=4}\\{5{a}_{1}+\frac{5×4}{2}d=30}\end{array}\right.$,联立解出即可得出.
(2)$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{4n(n+1)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,利用“裂项求和”方法、数列的单调性即可得出.

解答 (1)解:设等差数列{an}的公差为d,∵a2=4,S5=30,∴$\left\{\begin{array}{l}{{a}_{1}+d=4}\\{5{a}_{1}+\frac{5×4}{2}d=30}\end{array}\right.$,解得a1=d=2.∴an=2+2(n-1)=2n.
(2)证明:$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{4n(n+1)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,
∴数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和为Tn=$\frac{1}{4}$$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{4}$$(1-\frac{1}{n+1})$,
∴T1≤Tn$<\frac{1}{4}$,
∴$\frac{1}{8}$≤Tn<$\frac{1}{4}$.

点评 本题考查了等差数列的通项公式与求和公式、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知点M(m,m2),N(n,n2),其中m,n是关于x的方程sinθ•x2+cosθ•x-1=0(θ∈R)的两个不等实根.若圆O:x2+y2=1上的点到直线MN的最大距离为d,且正实数a,b,c满足abc+b2+c2=4d,则log4a+log2b+log2c的最大值是(  )
A.$\frac{5}{2}$B.4C.2$\sqrt{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{2x-5}{x-3}$的值域为[-4,2)∪(2,3],它的定义域为A,B={x|(x-a-2)(x-a-3)<0},若A∩B=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知(x-3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=(  )
A.45B.180C.-180D.720

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,若样本中A种型号产品有12件,那么样本的容量n=60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,已知∠ACB=90°,CA=3,CB=4,点E是边AB的中点,则$\overrightarrow{CE}$•$\overrightarrow{AB}$=$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(2019)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设各项均为正数的数列{an}的前n项之积为Tn,若Tn=2${\;}^{{n^2}+n}}$,则$\frac{{{a_n}+8}}{2^n}$的最小值为(  )
A.7B.6C.$\frac{17}{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=lnx-x在区间(0,e]上的最大值为-1.

查看答案和解析>>

同步练习册答案