分析 (1)设等差数列{an}的公差为d,由a2=4,S5=30,可得$\left\{\begin{array}{l}{{a}_{1}+d=4}\\{5{a}_{1}+\frac{5×4}{2}d=30}\end{array}\right.$,联立解出即可得出.
(2)$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{4n(n+1)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,利用“裂项求和”方法、数列的单调性即可得出.
解答 (1)解:设等差数列{an}的公差为d,∵a2=4,S5=30,∴$\left\{\begin{array}{l}{{a}_{1}+d=4}\\{5{a}_{1}+\frac{5×4}{2}d=30}\end{array}\right.$,解得a1=d=2.∴an=2+2(n-1)=2n.
(2)证明:$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{4n(n+1)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,
∴数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和为Tn=$\frac{1}{4}$$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{4}$$(1-\frac{1}{n+1})$,
∴T1≤Tn$<\frac{1}{4}$,
∴$\frac{1}{8}$≤Tn<$\frac{1}{4}$.
点评 本题考查了等差数列的通项公式与求和公式、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | 4 | C. | 2$\sqrt{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 45 | B. | 180 | C. | -180 | D. | 720 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 6 | C. | $\frac{17}{3}$ | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com