精英家教网 > 高中数学 > 题目详情
10.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,若样本中A种型号产品有12件,那么样本的容量n=60.

分析 根据分层抽样原理,利用样本容量与频率、频数的关系,即可求出样本容量n.

解答 解:根据分层抽样原理,得;
样本中A种型号产品有12件,对应的频率为:
$\frac{2}{2+3+5}$=$\frac{1}{5}$,
所以样本容量为:
n=$\frac{12}{\frac{1}{5}}$=60.
故答案为:60.

点评 本题考查了频率=$\frac{频数}{样本容量}$的应用问题,也考查了分层抽样方法的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若tanθ=-$\frac{1}{3}$,则cos2θ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤0)}\\{lo{g}_{2}x(x>0)}\end{array}\right.$,则f(4)=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设数列{an}为等差数列,其前n项和为Sn,已知a1+a5+a9=27,则a5=9,S9=81.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若数列{an}满足a1=a2=1,an+2=$\left\{{\begin{array}{l}{{a_n}+2,}&{n=2k-1(k∈{N^*})}\\{2{a_n},}&{n=2k(k∈{N^*})}\end{array}}$,则数列{an}前2n项和S2n=2n+n2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设等差数列{an}的前n项和为Sn,a2=4,S5=30
(1)求数列{an}的通项公式an
(2)设数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和为Tn,求证:$\frac{1}{8}$≤Tn<$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.sin523°sin943°+sin1333°sin313°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.解关于x的不等式mx2-(m+2)x+m+1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C焦点在x轴上,中心在原点,长轴长为4,离心率$\frac{\sqrt{3}}{2}$,F1、F2分别是椭圆的左、右焦点.
(1)若P是第一象限内椭圆C上的一点,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=-$\frac{5}{4}$,求点P的坐标;
(2)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为作标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

同步练习册答案