| A. | $\frac{11}{3}$ | B. | $\frac{13}{3}$ | C. | $\frac{14}{3}$ | D. | 5 |
分析 画出满足条件的平面区域,求出角点的坐标,由z=2x+y得:y=-2x+z,显然直线过A($\frac{4}{3}$,2)时,z最大,代入求出z即可.
解答 解:画出满足x,y满足约束条件$\left\{\begin{array}{l}3x-4≥0\\ y-1≥0\\ 3x+y-6≤0\end{array}\right.$,的平面区域,如图示:![]()
由$\left\{\begin{array}{l}{x=\frac{4}{3}}\\{3x+y-6=0}\end{array}\right.$,解得A($\frac{4}{3}$,2),
由z=2x+y可知直线过A($\frac{4}{3}$,2)时,z最大,得:y=2×$\frac{4}{3}$+2=$\frac{14}{3}$,
故选:C.
点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{3}$个单位 | B. | 向右平移$\frac{π}{3}$个单位 | ||
| C. | 向左平移$\frac{π}{6}$个单位 | D. | 向右平移$\frac{π}{6}$个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | -4$\sqrt{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | -$\frac{4\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com