精英家教网 > 高中数学 > 题目详情
16.要得到函数y=sin$\frac{1}{2}$x的图象,只需将函数y=sin($\frac{1}{2}$x+$\frac{π}{6}$)的图象(  )
A.向左平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{6}$个单位

分析 利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:将函数y=sin($\frac{1}{2}$x+$\frac{π}{6}$)=sin$\frac{1}{2}$(x+$\frac{π}{3}$)的图象向右平移$\frac{π}{3}$个单位,可得函数y=sin$\frac{1}{2}$sin(x-$\frac{π}{3}$+$\frac{π}{3}$)=sin$\frac{1}{2}$x的图象,
故选:B.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设x∈{y∈N|0≤y≤9},则log2x∈N的概率为(  )
A.$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{3}{10}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+3x,数列{an}的前n项和为Sn,点$(n,{S_n})(n∈{N^*})$均在函数y=f(x) 的图象上.
(1)求数列{an}的通项公式;
(2)令${b_n}=\frac{a_n}{2^n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式(a-3)x2+2(a-3)x-4<0对于一切x∈R恒成立,那么a的取值范围是(  )
A.(-∞,-3)B.(-1,3]C.(-∞,-3]D.(-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.正项数列{an}中,a1=1,奇数项a1,a3,a5,…,a2k-1,…构成公差为d的等差数列,偶数项a2,a4,a6,…,a2k,…构成公比q=2的等比数列,且a1,a2,a3成等比数列,a4,a5,a7成等差数列.
(1)求a2和d;
(2)求数列{an}的前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知离心率为$\frac{{3\sqrt{5}}}{5}$的双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{4}=1$,(a>0)的左焦点与抛物线y2=mx的焦点重合,则实数m=-12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线y2=4x的焦点为F,过焦点F的直线AC、BD分别与抛物线交于点A,C
和点B,D.
(1)若直线AC的斜率为1,点C在第一象限,求$\frac{{|{CF}|}}{{|{AF}|}}$的值;
(2)若AC⊥BD,求|AC|+|BD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若关于x的二次方程mx2+(2m-1)x-m+2=0(m>0)的两个互异的实根都小于1,则实数m的取值范围是($\frac{3+\sqrt{7}}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若x,y满足约束条件$\left\{\begin{array}{l}3x-4≥0\\ y-1≥0\\ 3x+y-6≤0\end{array}\right.$,则z=2x+y的最大值为(  )
A.$\frac{11}{3}$B.$\frac{13}{3}$C.$\frac{14}{3}$D.5

查看答案和解析>>

同步练习册答案