精英家教网 > 高中数学 > 题目详情
11.正项数列{an}中,a1=1,奇数项a1,a3,a5,…,a2k-1,…构成公差为d的等差数列,偶数项a2,a4,a6,…,a2k,…构成公比q=2的等比数列,且a1,a2,a3成等比数列,a4,a5,a7成等差数列.
(1)求a2和d;
(2)求数列{an}的前2n项和S2n

分析 (1)根据a3=a4和等差数列、等比数列的性质计算;
(2)分别对等差数列和等比数列求和即可.

解答 解:(1)∵a3,a5,a7成等差数列,a4,a5,a7成等差数列,
∴a3=a4
∴a1,a2,a4成等比数列,∴a2=a1q=2,
∴a3=a4=4,
∴d=a3-a1=3.
(2)S2n=na1+$\frac{n(n-1)}{2}×d$+$\frac{{a}_{2}(1-{q}^{n})}{1-q}$=n+$\frac{3{n}^{2}}{2}$-$\frac{3n}{2}$+2(2n-1)=2n+1+$\frac{3}{2}{n}^{2}$-$\frac{n}{2}$-2.

点评 本题考查了等差数列、等比数列的通项公式与求和公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.随机变量X等可能取值为1,2,3,…,n,如果$P(X<4)=\frac{1}{2}$,那么n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在直二面角α-MN-β中,等腰直角三角形ABC的斜边BC?α,一直角边AC?β,BC与β所成角的正弦值为$\frac{\sqrt{6}}{4}$,则AB与β所成的角是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将y=cosx的图象上的所有点的纵坐标不变,横坐标缩小到原来的一半,然后再将所得图象向左平移$\frac{π}{4}$个单位长度,则最后所得图象的解析式为(  )
A.y=cos(2x+$\frac{π}{4}$)B.y=cos($\frac{x}{2}$+$\frac{π}{4}$)C.y=sin2xD.y=-sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$+$\overrightarrow{b}$|=6,|$\overrightarrow{b}$|=|$\overrightarrow{c}$|,且$\overrightarrow{b}$⊥$\overrightarrow{c}$,则|$\overrightarrow{b}$-$\overrightarrow{c}$|的取值范围为(  )
A.[4,8]B.[4$\sqrt{2}$,8$\sqrt{2}$]C.(4,8)D.(4$\sqrt{2}$,8$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.要得到函数y=sin$\frac{1}{2}$x的图象,只需将函数y=sin($\frac{1}{2}$x+$\frac{π}{6}$)的图象(  )
A.向左平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\sqrt{3}sin2x-cos2x(x∈R)$,则将f(x)的图象向右平移$\frac{π}{3}$个单位所得曲线的一条对称轴的方程是(  )
A.x=πB.x=$\frac{π}{4}$C.x=$\frac{π}{2}$D.x=$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在(x+2)8展开式中,只有第5项的二项式系数最大
(1)若$(a-\frac{1}{x}){(x+2)^n}$的展开式中常数项的系数为1024,求a的值
(2)求(x+2)8展开式所有含x奇次幂的系数和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax2-4(a为非零实数),设函数F(x)=$\left\{\begin{array}{l}{f(x)(x>0)}\\{-f(x)(x<0)}\end{array}\right.$
(1)若f(-2)=0,求F(x)的表达式;
(2)在(1)的条件下,解不等式1≤|F(x)|≤2;
(3)设mn<0,m+n>0,试判断F(m)+F(n)能否大于0?

查看答案和解析>>

同步练习册答案