精英家教网 > 高中数学 > 题目详情
11.若α是第二象限角,且tan(π-α)=$\frac{1}{2}$,则cos($\frac{3π}{2}$-α)=-$\frac{\sqrt{5}}{5}$.

分析 由条件利用诱导公式、同角三角函数的基本关系求得sinα、cosα的值,从而求得要求式子的值.

解答 解:∵α是第二象限角,且tan(π-α)=-tanα=$\frac{1}{2}$,∴tanα=$\frac{sinα}{cosα}$=-$\frac{1}{2}$,sin2α+cos2α=1,
∴sinα=$\frac{\sqrt{5}}{5}$,cosα=-$\frac{2\sqrt{5}}{5}$,则cos($\frac{3π}{2}$-α)=-sinα=-$\frac{\sqrt{5}}{5}$,
故答案为:-$\frac{\sqrt{5}}{5}$.

点评 本题主要考查利用诱导公式、同角三角函数的基本关系化简三角函数式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+3x,数列{an}的前n项和为Sn,点$(n,{S_n})(n∈{N^*})$均在函数y=f(x) 的图象上.
(1)求数列{an}的通项公式;
(2)令${b_n}=\frac{a_n}{2^n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线y2=4x的焦点为F,过焦点F的直线AC、BD分别与抛物线交于点A,C
和点B,D.
(1)若直线AC的斜率为1,点C在第一象限,求$\frac{{|{CF}|}}{{|{AF}|}}$的值;
(2)若AC⊥BD,求|AC|+|BD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若关于x的二次方程mx2+(2m-1)x-m+2=0(m>0)的两个互异的实根都小于1,则实数m的取值范围是($\frac{3+\sqrt{7}}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.直线l在双曲线$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1上截得的弦长为4,且l的斜率为2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=\frac{x}{{|{lnx}|}}$,若关于x的方程f2(x)-(m+1)f(x)+m=0恰好有4个不相等的实数根,则实数m的取值范围为(  )
A.(0,e)B.(1,e)C.(e,2e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩的茎叶图如图,其中甲班学生成绩的平均分是85,乙班学生成绩的中位数是83.
(1)求x和y的值.
(2)分别求出甲,乙班成绩的众数.
(3)计算甲班7位学生成绩的方差s2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若x,y满足约束条件$\left\{\begin{array}{l}3x-4≥0\\ y-1≥0\\ 3x+y-6≤0\end{array}\right.$,则z=2x+y的最大值为(  )
A.$\frac{11}{3}$B.$\frac{13}{3}$C.$\frac{14}{3}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知△ABC的两个顶点A,B的坐标分别是(0,-1),(0,1)且边AC,BC所在的直线的斜率之积等于
m(m≠0)
(Ⅰ)求顶点C的轨迹E的方程,并判断轨迹E的曲线类型;
(Ⅱ)当m=$-\frac{1}{2}$时,过点F(1,0)的直线l交曲线E于M,N两点,设点N关于x轴的对称点为Q(M,Q不重合),求证:直线MQ与x轴的交点为定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案