精英家教网 > 高中数学 > 题目详情
3.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩的茎叶图如图,其中甲班学生成绩的平均分是85,乙班学生成绩的中位数是83.
(1)求x和y的值.
(2)分别求出甲,乙班成绩的众数.
(3)计算甲班7位学生成绩的方差s2

分析 (1)由甲班学生成绩的平均分是85,乙班学生成绩的中位数是83,利用茎叶图,列出方程组能求出x,y.
(2)由茎叶图能求出甲班学生的众数和乙班学生的众数.
(3)由甲班学生的平均数是85,能求出甲班7位学生成绩的方差.

解答 解:(1)∵甲班学生成绩的平均分是85,乙班学生成绩的中位数是83,
∴由茎叶图,得:
$\left\{\begin{array}{l}{\frac{1}{7}(78+79+80+80+x+85+92+96)=85}\\{80+y=83}\end{array}\right.$,
解得x=5,y=3.
(2)由茎叶图知,甲班学生的众数是85,
乙班学生的众数是81和91.
(3)∵甲班学生的平均数是85,
∴甲班7位学生成绩的方差:
S2=$\frac{1}{7}$[(78-85)2+(79-85)2+(80-85)2+(85-85)2+(85-85)2+(92-85)2+(96-85)2]=40.

点评 本题考查茎叶图的应用,考查众数、平均数、中位数、方差、茎叶图等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.将y=cosx的图象上的所有点的纵坐标不变,横坐标缩小到原来的一半,然后再将所得图象向左平移$\frac{π}{4}$个单位长度,则最后所得图象的解析式为(  )
A.y=cos(2x+$\frac{π}{4}$)B.y=cos($\frac{x}{2}$+$\frac{π}{4}$)C.y=sin2xD.y=-sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在(x+2)8展开式中,只有第5项的二项式系数最大
(1)若$(a-\frac{1}{x}){(x+2)^n}$的展开式中常数项的系数为1024,求a的值
(2)求(x+2)8展开式所有含x奇次幂的系数和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若α是第二象限角,且tan(π-α)=$\frac{1}{2}$,则cos($\frac{3π}{2}$-α)=-$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}是各项为正的等比数列,首项a1=$\frac{1}{3}$,前3项的和S3=$\frac{13}{27}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设an•bn=n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在平面直角坐标系xoy中,已知圆C:(x+1)2+y2=16,点A(1,0),点B(a,0)(|a|>3),以B为圆心,|BA|的半径作圆,交圆C于点P,且的∠PBA的平分线次线段CP于点Q.
(I)当a变化时,点Q始终在某圆锥曲线τ是运动,求曲线τ的方程;
(II)已知直线l过点C,且与曲线τ交于M、N两点,记△OCM面积为S1,△OCN面积为S2,求$\frac{S_1}{S_2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax2-4(a为非零实数),设函数F(x)=$\left\{\begin{array}{l}{f(x)(x>0)}\\{-f(x)(x<0)}\end{array}\right.$
(1)若f(-2)=0,求F(x)的表达式;
(2)在(1)的条件下,解不等式1≤|F(x)|≤2;
(3)设mn<0,m+n>0,试判断F(m)+F(n)能否大于0?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若角600°的终边上有一点(-4,a),则a的值是(  )
A.4B.-4$\sqrt{3}$C.$\frac{4\sqrt{3}}{3}$D.-$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{2}{x}-\frac{1}{e},x<0}\\{\frac{lnx}{x},x>0}\end{array}\right.$若关于x的方程f(x)=t有三个不同的解,其中最小的解为a,则$\frac{t}{a}$的取值范围为(-$\frac{1}{{e}^{2}}$,0).

查看答案和解析>>

同步练习册答案