分析 (1)判断函数定义域是否关于原点对称,取特殊值:令x=y=0,可得f(0)=0令y=-x,则f(x)+f(-x)=f(0)=0;
(2)用定义法证明函数的单调性:在R上任取x1,x2且x1<x2,判断f(x2-x1)=f(x2)+f(-x)=f(x2)-f(x1)>0.
(3)根据f(1)=2,则4=f(2),将不等式等价转化为f(3x+4)>f(2),再利用函数的单调性即可解得不等式的解集.
解答 解:(1)(x)定义在R上,定义域关于原点对称
令x=y=0,可得f(0)=0
令y=-x,则f(x)+f(-x)=f(0)=0
即f(-x)=-f(x)
∴f(x)为奇函数.
(2)R上任取x1,x2且x1<x2
∵x2-x1>0
∴f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1)>0
即f(x2)>f(x1)
∴f(x)在R上为增函数.
(3)∵f(x+y)=f(x)+f(y),且f(1)=2,
∴4=2+2=f(1)+f(1)=f(1+1)=f(2),
∴不等式f(3x+4)>4等价转化为f(3x+4)>f(2),
根据(1)中证明可知,f(x)在R上是单调递增函数,
∴3x+4>2,解得,x>$\frac{2}{3}$,
∴不等式f(3x+4)>4的解集为{x|x>-$\frac{2}{3}$}
点评 本题主要考察了抽象函数及其应用,利用单调性解不等式问题,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\frac{5}{2}$ | C. | $\frac{2π}{3}$ | D. | $\frac{3π}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com