分析 利用导数工具去解决该函数极值的求解问题,关键要利用导数将原函数的单调区间找出来,即可确定出在哪个点处取得极值,进而得到答案.
解答 解:函数的定义域为R,f′(x)=3x2-12,令f′(x)=0,解得x1=-2或x2=2.列表:
| x | (-∞,-2) | -2 | (-2,2) | 2 | (2,+∞) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | ↗ | 极大值16+a=11 | ↘ | 极小值-16+a | ↗ |
点评 利用导数工具求该函数的极值是解决该题的关键,要先确定出导函数大于0时的实数x的范围,再讨论出函数的单调区间,根据极值的判断方法求出该函数的极值,体现了导数的工具作用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2-$\frac{3{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{12}$=1 | C. | x2-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | (0,1) | C. | (0,1] | D. | (1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com