精英家教网 > 高中数学 > 题目详情
12.已知函数y=f(2x+1)定义域为[1,4],则y=f(3x)的定义域为(  )
A.[1,2]B.[3,81]C.[3,9]D.[-∞,4]

分析 根据题目给出的函数y=f(2x+1)定义域,求出函数y=f(x)的定义域,然后由3x在f(x)的定义域内求解x即可得到函数y=f(3x)定义域.

解答 解:因为函数y=f(2x+1)定义域为[1,4],
所以x∈[1,4],则2x+1∈[3,9],即函数f(x)的定义域为[3,9],
再由3≤3x≤9,得:1≤x≤2,
所以函数y=f(3x)的定义域为[1,2].
故选:A.

点评 本题考查了函数的定义域及其求法,给出了函数y=f(x)的定义域为[a,b],求解y=f[g(x)]的定义域,只要让g(x)∈[a,b],求解x即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知{an}是递增的等比数列,且a2+a3=-1,那么首项a1的取值范围是$({-∞\;,\;-\frac{1}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设随机变量X服从[1,4]上的均匀分布,则P{2≤x≤3}=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简(a+2b+c)3-(a+b)3-(b+c)3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{{x}^{2}}{{x}^{2}+1}$,设f(n)=an(n∈N+),求证:$\frac{1}{2}$≤an<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若Sn为等差数列{an}的前n项和,且S4=4a3+2,则公差d的值为(  )
A.-1B.1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知P为球O球面上的一点,A为OP的中点,若过点A且与OP垂直的平面截球O所得圆的面积为3π,则球O的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过原点且与直线$\sqrt{6}x-\sqrt{3}y+1=0$平行的直线l被圆${x^2}+{({y-\sqrt{3}})^2}=7$所截得的弦长为2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄的频数分布及支持“生育二胎”人数如表:
年龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
频数510151055
支持“生育二胎”4512821
(1)由以上统计数据填下面2乘2列联表,并问是否有的99%把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:
(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取两人进行调查,记选中的4人不支持“生育二胎”人数为ξ,求随机变量ξ的分布列及数学期望;
年龄不低于45岁的人数年龄低于45岁的人数合计
支持a=c=
不支持b=d=
合计
参考数据:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+\\;b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案