精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= (t+1)lnx,,其中t∈R.

(1)若t=1,求证:当x>1时,f(x)>0成立;

(2)若t> ,判断函数g(x)=x[f(x)+t+1]的零点的个数.

【答案】(1)见解析(2)1

【解析】试题分析:(1)时,对求导得增区间, 得减区间进而求出函数的最小值值即可证明;(2)t>求得函数g(x)=x[f(x)+t+1]的导函数,研究其单调性,根据零点定理再利用导数即可判定零点的个数.

试题解析:解:(1)t=1时,f(x)=x﹣﹣2lnx,x>0

∴f′(x)=1+==≥0,

∴f(x)在(1,+∞)上单调递增,

∴f(x)>f(1)=1﹣1﹣0=0,

∴x>1,f(x)>0成立,

(2)当x(0,+∞),g(x)=tx2﹣(t+1)xlnx+(t+1)x﹣1

∴g′(x)=2tx﹣(t+1)lnx,

设m(x)=2tx﹣(t+1)lnx, ∴m′(x)=2t﹣=

令m′(x)=0,得x=

当0<x<时,m'(x)<0;当时x>,m'(x)>0.

∴g'(x)在(0,)上单调递减,在(,+∞)上单调递增.

∴g'(x)的最小值为g′()=(t+1)(1﹣ln),

∵t>,∴ =++<e.

∴g'(x)的最小值g′()=(t+1)(1﹣ln)>0,

从而,g(x)在区间(0,+∞)上单调递增.

又g(1)=2t>0,又g()=+(6+2lnt)﹣1,

设h(t)=e3t﹣(2lnt+6).

则h′(t)=e3

令h'(t)=0得t=.由h'(t)<0,得0<t<

由h'(t)>0,得t>

∴h(t)在(0,)上单调递减,在(,+∞)上单调递增.

∴h(t)min=h()=2﹣2ln2>0.

∴h(t)>0恒成立.∴e3t>2lnt+6,.

∴g()<+﹣1=++﹣1<++﹣1<0.

∴当t>时,函数g(x)恰有1个零点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 平面

1)在上求作点,使平面,请写出作法并说明理由;

2)求三棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,EAA1的中点,画出过D1CE的平面与平面ABB1A1的交线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,左顶点为.

(1)求椭圆的方程;

(2)已知为坐标原点, 是椭圆上的两点,连接的直线平行轴于点,证明: 成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.

(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;

(2)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点,椭圆的左,右顶点分别为.过点的直线与椭圆交于两点,且的面积是的面积的3倍.

(Ⅰ)求椭圆的方程;

(Ⅱ)若轴垂直,是椭圆上位于直线两侧的动点,且满足,试问直线的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=2sin(x-)-,现将f(x)的图象向左平移个单位长度,再向上平移个单位长度,得到函数g(x)的图象.

(1)求f()+g()的值;

(2)若a,b,c分别是△ABC三个内角A,B,C的对边,a+c=4,且当x=B时,g(x)取得最大值,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】产品的广告费支出x与销售额y(单位百万元)之间有如下对应数据

x

2

4

5

6

8

y

30

40

60

50

70

(1)画出散点图.

(2)求回归方程.

(3)试预测广告费支出为10百万元时销售额多大?

查看答案和解析>>

同步练习册答案