精英家教网 > 高中数学 > 题目详情
在菱形中,,线段的中点是,现将沿折起到的位置,使平面和平面垂直,线段的中点是

⑴证明:直线∥平面
⑵判断平面和平面是否垂直,并证明你的结论.

(1)证明略
(2)垂直
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O为AE的中点,以AE为折痕,将△ADE向上折起,使D到P,且PC=PB
(1)求证:PO⊥面ABCE;
(2)求AC与面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在三棱锥P-ABC中,⊿PAB是等边三角形,D,E分别为AB,PC的中点.
(1)在BC边上是否存在一点F,使得PB∥平面DEF
(2)若∠PAC=∠PBC=90º,证明:AB⊥PC
(3)在(2)的条件下,若AB=2AC=求三棱锥P-ABC的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知梯形中,
分别是上的点,的中点。沿将梯形翻折,使平面⊥平面 (如图) .

(Ⅰ)当时,求证: ;
(Ⅱ)以为顶点的三棱锥的体积记为,求的最大值;
(Ⅲ)当取得最大值时,求钝二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=

(Ⅰ)求面ASD与面BSC所成二面角的大小;
(Ⅱ)设棱SA的中点为M,求异面直线DM与SB所成角的大小;
(Ⅲ)求点D到平面SBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(、(本题12分)

如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD,底面ABCD为直角梯形,BCADABADAD=2AB=2BC="2, " OAD中点.
(1)求证:PO⊥平面ABCD
(2)求直线PB与平面PAD所成角的正弦值;
(3)线段AD上是否存在点Q,使得三棱锥的体积为?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在北圈上有甲、乙两地,甲地位于东经,乙地位于西经, 则地球(半径为R)表面上甲、乙两地的最短距离是
A.             B.              C.            D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在四棱锥VABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为的等腰三角形,则二面角VABC的度数是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正的中线与中位线相交,
已知旋转过程中的一个
图形(不与重合).现给出下列四个命题:
①动点在平面上的射影在线段上;
②平面平面;                                                      
③三棱锥的体积有最大值;
④异面直线不可能垂直.其中正确的命题的序号是_________.

查看答案和解析>>

同步练习册答案