ÒÑÖªÔ²C¹ý¶¨µãA£¨0£¬a£©£¨a£¾0£©£¬ÇÒÔÚxÖáÉϽصõÄÏÒMNµÄ³¤Îª2a£®
£¨1£©ÇóÔ²CµÄÔ²ÐĵĹ켣·½³Ì£»
£¨2£©Éè|AM|=m£¬|AN|=n£¬Çó
m
n
+
n
m
µÄ×î´óÖµ¼°´ËʱԲCµÄ·½³Ì£®¡÷ABCÖУ¬a£¬b£¬cÊÇÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬ÇÒlgsinA£¬lgsinB£¬lgsinC³ÉµÈ²îÊýÁУ¬ÔòÏÂÁÐÁ½ÌõÖ±Ïßl1£º£¨sin2A£©x+£¨sinA£©y-a=0£¬l2£º£¨sin2B£©x+£¨sinC£©y-c=0µÄλÖùØϵÊÇ£¨¡¡¡¡£©
·ÖÎö£º£¨1£©ÉèÔ²CµÄÔ²ÐÄΪC£¨x£¬y£©£¬Ô²µÄ°ë¾¶ r=
x2+(y-a)2
£¬ÓÉÔ²CÔÚxÖáÉϽصõÄÏÒMNµÄ³¤Îª2a£®¿ÉµÃ|y|2+a2=r2£¬ÕûÀí¿ÉÇó£®
£¨2£©Éè¡ÏMAN=¦È£¬|AM|=m£¬|AN|=n£¬|MN|=2a£¬¹Êm2+n2-2m•n•cos¦È=4a2£¬ÓÉS¡÷MAN=
1
2
mnsin¦È=
1
2
•a•2a
£¬
n
m
=2cos¦È+2sin¦È
=2
2
sin(¦È+
¦Ð
4
)¡Ü2
2
£¬Öªµ±¦È=
¦Ð
4
ʱ£¬
m
n
+
n
m
È¡×î´óÖµ2
2
£¬ÓÉ´ËÄÜÇó³ö
m
n
+
n
m
µÄ×î´óÖµ¼°´ËʱԲCµÄ·½³Ì£®
ÓɵȲîÊýÁеÄÐÔÖʵÃsin2B=sinA•sinC£¬·Ö±ð»¯¼òÁ½Ö±Ïß·½³ÌµÄÒ»´ÎÏîϵÊýÓë³£ÊýÏîÖ®±ÈµÄ½á¹û£¬´Ó¶øµÃµ½Á½ÌõÖ±Ïßl1£º£¨sin2A£©x+£¨sinA£©y-a=0£¬l2£º£¨sin2B£©x+£¨sinC£©y-c=0µÄλÖùØϵ£®
½â´ð£º½â£º£¨1£©ÉèÔ²CµÄÔ²ÐÄΪC£¨x£¬y£©£¬
ÒÀÌâÒâÔ²µÄ°ë¾¶   r=
x2+(y-a)2
£¬
¡ßÔ²CÔÚxÖáÉϽصõÄÏÒMNµÄ³¤Îª2a£®
¡à|y|2+a2=r2£¬
¹Êx2+£¨y-a£©2=|y|2+a2£¬
¡àx2=2ay£¬
¡àÔ²CµÄÔ²ÐĵĹ켣·½³ÌΪx2=2ay£®
£¨2£©Éè¡ÏMAN=¦È£¬
|AM|=m£¬|AN|=n£¬|MN|=2a£¬
¡àm2+n2-2m•n•cos¦È=4a2£¬
¡ßS¡÷MAN=
1
2
mnsin¦È=
1
2
•a•2a
£¬
¡à
n
m
=2cos¦È+2sin¦È
=2
2
sin(¦È+
¦Ð
4
)¡Ü2
2
£¬
µ±¦È=
¦Ð
4
ʱ£¬
m
n
+
n
m
È¡×î´óÖµ2
2
£¬
¡ß¡ÏMCN=2¡ÏMAN=
¦Ð
2
£¬
¡àµãCµÄ×ø±êΪ(¡À
2
a£¬a)
£¬
¹Ê
m
n
+
n
m
µÄ×î´óֵΪ2
2
£¬
´ËʱԲCµÄ·½³ÌΪ(x-
2
a)2+(y-a)2=2a2
£¬
»ò(x+
2
a)2+(y-a)2=2a2
£®
ÓÉÒÑÖª2lgsinB=lgsinA+lgsinC£¬µÃ  lg£¨sinB£©2=lg£¨sinA•sinC£©£®
¡àsin2B=sinA•sinC£®  
Éèl1£ºa1x+b1y+c1=0£¬l2£ºa2x+b2y+c2=0£®
¡ß
a1
a2
=
sin2A
sin2B
=
sin2A
sinAsinC
=
sinA
sinC
£¬
b1
b2
=
sinA
sinC
£¬
c1
c2
=
-a
-c
=
-2RsinA
-2RsinC
=
sinA
sinC
£¬
¡à
a1
a2
=
b1
b2
=
c1
c2
£¬
¡àl1Óël2Öغϣ¬
¹ÊÑ¡A£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÍÖÔ²±ê×¼·½³Ì£¬¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬Ô²µÄ¼òµ¥ÐÔÖʵȻù´¡ÖªÊ¶£®¿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²éº¯ÊýÓë·½³Ì˼Ï룬»¯¹éÓëת»¯Ë¼Ï룮±¾Ì⿼²éµÈ²îÊýÁеÄÐÔÖÊ£¬Á½Ö±ÏßλÖùØϵµÄÅж¨·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

(12·Ö)Èçͼ£¬ÒÑÖªÔ²C£º,¶¨µãA(1,0),MΪԲÉÏÒ»¶¯µã£¬µãPÔÚAMÉÏ£¬µãNÔÚCMÉÏ£¬ÇÒÂú×ã=,?=0£¬µãNµÄ¹ì¼£ÎªÇúÏßE.

£¨¢ñ£©ÇóÇúÏßEµÄ·½³Ì£»

£¨¢ò£©Èô¹ý¶¨µãA(1,0)µÄÖ±Ïß½»ÇúÏßEÓÚ²»Í¬µÄÁ½µãG¡¢H£¬

ÇÒÂú×ã¡ÏGOHΪÈñ½Ç£¬ÇóÖ±ÏßµÄбÂÊkµÄÈ¡Öµ·¶Î§.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÔ²C¹ý¶¨µãA(0£¬p)(p£¾0)£¬Ô²ÐÄCÔÚÅ×ÎïÏßx2=2pyÉÏÔ˶¯£¬ÈôMNΪԲCÔÚxÖáÉϽصõÄÏÒ£¬Éè£üAM£ü=m,£üAN£ü=n£¬¡ÏMAN=¦È.

(1)µ±µãCÔ˶¯Ê±£¬£üMN£üÊÇ·ñ±ä»¯?д³ö²¢Ö¤Ã÷ÄãµÄ½áÂÛ?

(2)Çó+µÄ×î´óÖµ£¬²¢ÇóÈ¡µÃ×î´óֵʱ¦ÈµÄÖµºÍ´ËʱԲCµÄ·½³Ì.Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÒÑÖªÔ²C¹ý¶¨µãA£¨0£¬a£©£¨a£¾0£©£¬ÇÒÔÚxÖáÉϽصõÄÏÒMNµÄ³¤Îª2a£®
£¨1£©ÇóÔ²CµÄÔ²ÐĵĹ켣·½³Ì£»
£¨2£©Éè|AM|=m£¬|AN|=n£¬Çó
m
n
+
n
m
µÄ×î´óÖµ¼°´ËʱԲCµÄ·½³Ì£®¡÷ABCÖУ¬a£¬b£¬cÊÇÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬ÇÒlgsinA£¬lgsinB£¬lgsinC³ÉµÈ²îÊýÁУ¬ÔòÏÂÁÐÁ½ÌõÖ±Ïßl1£º£¨sin2A£©x+£¨sinA£©y-a=0£¬l2£º£¨sin2B£©x+£¨sinC£©y-c=0µÄλÖùØϵÊÇ£¨¡¡¡¡£©
A£®¡¢ÖغÏB£®Ïཻ£¨²»´¹Ö±£©C£®´¹Ö±D£®Æ½ÐÐ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÔ²C¹ý¶¨µãA(0,a)(a>0)ÇÒÔÚxÖáÉϽصõÄÏÒMNµÄ³¤Îª2a.

ÇóÔ²CµÄÔ²ÐĵĹ켣·½³Ì£»

Éè|AM|=m£¬|AN|=n£¬Çó+µÄ×î´óÖµ¼°´ËʱԲCµÄ·½³Ì.

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸