精英家教网 > 高中数学 > 题目详情
椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的内接等腰△ABC的顶点A的坐标为(0,b),其底边BC上的高在y轴上,若△ABC的面积不超过
3
2
b2
,则椭圆离心率的取值范围为(  )
A、(0,
1
2
]
B、[
1
2
,1)
C、(0,
3
2
]
D、[
3
2
,1)
分析:首先设点B(acosx,bsintx) C(-acosx,bsinx),进而求得底边、高、面积得出恒有(1-sinx)cosx≤
3b
2a
,再根据c2=a2-b2,就能得到答案.
解答:解:∵△ABC为等腰三角形.
∴可设点B(acosx,bsinx) C(-acosx,bsinx).其中-
π
2
<x<
π
2

此时易知,该三角形底边BC=2acosx,高=b(1-sinx)
∴S=ab(1-sinx)cosx
由题设可得ab(1-sinx)cosx≤
3
2
b2

∴恒有(1-sinx)cosx≤
3b
2a

3
3
4
3b
2a

整理可得,
3
a≤2b
两边平方,3a2≤4b2=4(a2-c2
∴4c2≤a2
c
a
1
2

故选A.
点评:本题考查了椭圆的简单性质,本题采用参数方法使问题变得简单化,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,求证:|AT|2=
1
2
|AF1||AF2|

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,M为线段AF1的中点,求证:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中数学 来源: 题型:

设 A(x1,y1)、B(x2,y2)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的两点,O为坐标原点,向量
m
=(
x1
a
y1
b
),
n
=(
x2
a
y2
b
)
m
n
=0

(1)若A点坐标为(a,0),求点B的坐标;
(2)设
OM
=cosθ•
OA
+sinθ•
OB
,证明点M在椭圆上;
(3)若点P、Q为椭圆 上的两点,且
PQ
OB
,试问:线段PQ能否被直线OA平分?若能平分,请加以证明;若不能平分,请说明理由.

查看答案和解析>>

科目:高中数学 来源:四川 题型:解答题

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

同步练习册答案