分析 由函数图象可知:$\frac{3}{4}$T=$\frac{5π}{12}-(-\frac{π}{3})$,可解得T,由周期公式可求ω,由点(-$\frac{π}{3}$,0)在函数图象上,结合φ的范围,可求φ,从而可得函数解析式,即可求值得解.
解答 解:由函数图象可知:$\frac{3}{4}$T=$\frac{5π}{12}-(-\frac{π}{3})$,可解得:T=π=$\frac{2π}{ω}$,故ω=2,
由点(-$\frac{π}{3}$,0)在函数图象上,有2sin(φ-$\frac{2π}{3}$)=0,既有:φ-$\frac{2π}{3}$=kπ,k∈Z
由-$\frac{π}{2}$<φ<$\frac{π}{2}$,可解得:φ=-$\frac{π}{3}$.
故:f($\frac{π}{3}$)=2sin(2×$\frac{π}{3}-\frac{π}{3}$)=2sin$\frac{π}{3}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.
点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,其中确定φ的值是解题的关键,属于基本知识的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 存在x0,使得sinx0<x0 | B. | 存在x0,使得sinx0≥x0 | ||
| C. | 对任意x∈R,都有sinx>x | D. | 对任意x∈R,都有sinx≥x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com