精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C所对的边分别是a,b,c,.

)证明:

)若,求.

【答案】()证明详见解析;(4.

【解析】试题分析:()将已知等式通分后利用两角和的正弦函数公式整理,利用正弦定理,即可证明.()由余弦定理求出A的余弦函数值,利用()的条件,求解B的正切函数值即可

试题解析:(1)根据正弦定理,设===kk>0).

a="ksin" Ab="ksin" Bc="ksin" C

代入+=中,有+=,变形可得

sin Asin B="sin" Acos B+cos Asin B=sinA+B).

△ABC中,由A+B+C=π,有sinA+B=sinπ–C="sin" C

所以sin Asin B="sin" C

2)由已知,b2+c2–a2=bc,根据余弦定理,有cos A==

所以sin A==

由(),sin Asin B="sin" Acos B+cos Asin B,所以sin B=cos B+sin B

tan B==4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设定义域为R的奇函数 (a为实数). (Ⅰ)求a的值;
(Ⅱ)判断f(x)的单调性(不必证明),并求出f(x)的值域;
(Ⅲ)若对任意的x∈[1,4],不等式f(k﹣ )+f(2﹣x)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在x轴上的椭圆的一个顶点坐标为(0,1),其离心率为
(1)求椭圆的标准方程;
(2)椭圆上一点P满足∠F1PF2=60°,其中F1 , F2为椭圆的左右焦点,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年3月9日至15日,谷歌人工智能系统“阿尔法”迎战围棋冠军李世石,最终结果“阿尔法”以总比分4比1战胜李世石.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查,在参加调查的2548名男性中有1560名持反对意见,2452名女性中有1200名持反对意见,在运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是(
A.茎叶图
B.分层抽样
C.独立性检验
D.回归直线方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圆C与直线l:x+2y﹣4=0相交于M,N两点,且|MN|= ,求m的值;
(2)在(1)条件下,是否存在直线l:x﹣2y+c=0,使得圆上有四点到直线l的距离为 ,若存在,求出c的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x﹣2x , 若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,则实数t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式ax2﹣(a+1)x+1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是我国2009年至2015年生活垃圾无害化处理量(单位:亿吨)的折线图.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2017年我国生活垃圾无害化处理量.
参考数据: yi=9.32, tiyi=40.17, =0.55, ≈2.646.
参考公式:相关系数r= =
回归方程 = + t中斜率和截距的最小二乘估计公式分别为: = = t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=x+sin|x|,x∈[﹣π,π]的大致图象是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案