精英家教网 > 高中数学 > 题目详情

【题目】如图是我国2009年至2015年生活垃圾无害化处理量(单位:亿吨)的折线图.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2017年我国生活垃圾无害化处理量.
参考数据: yi=9.32, tiyi=40.17, =0.55, ≈2.646.
参考公式:相关系数r= =
回归方程 = + t中斜率和截距的最小二乘估计公式分别为: = = t.

【答案】解:(Ⅰ)变量y与t的相关系数r= ≈0.99, 故可用线性回归模型拟合变量y与t的关系.
(Ⅱ) =4, = yi , 所以 = =0.1,
= t=
所以线性回归方程为 =0.1t+0.93,
当t=9时, =0.1×9+0.93=1.83,
因此,我们可以预测2017年我国生活垃圾无害化处理1.83亿吨
【解析】(Ⅰ)求出变量y与t的相关系数,可得结论;(Ⅱ)求出回归系数,可得回归方程,即可预测2017年我国生活垃圾无害化处理1.83亿吨.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求函数的单调区间;

)当时,证明:(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别是a,b,c,.

)证明:

)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则 + 的最小值为(
A.3+2
B.3+2
C.7
D.11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的图象如图所示,为了得到g(x)=sinωx的图象,则只要将f(x)的图象(
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向右平移 个单位长度
D.向左平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=8x的焦点为F,过F作倾斜角为60°的直线l.
(1)求直线l的方程;
(2)求直线l被抛物线C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是首项为正数的等差数列,a1a2=3,a2a3=15.
(1)求数列{an}的通项公式;
(2)设bn=(an+1)2 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与坐标轴交于(如图).

1)点是圆上除外的任意点(如图1),与直线交于不同的两点,求的最小值;

2)点是圆上除外的任意点(如图2),直线轴于点,直线于点.的斜率为的斜率为,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各对函数中,相同的是(
A.f(x)=lgx2 , g(x)=2lgx
B.f(x)=lg ,g(x)=lg(x+1)﹣lg(x﹣1)
C.f(u)= ,g(v)=
D.f(x)=x,g(x)=

查看答案和解析>>

同步练习册答案