【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡的株数:
温度(单位:℃) | 21 | 23 | 24 | 27 | 29 | 32 |
死亡数(单位:株) | 6 | 11 | 20 | 27 | 57 | 77 |
经计算:,,,.
其中分别为试验数据中的温度和死亡株数,.
(1)与是否有较强的线性相关性? 请计算相关系数(精确到)说明.
(2)并求关于的回归方程(和都精确到);
(3)用(2)中的线性回归模型预测温度为时该批紫甘薯死亡株数(结果取整数).
附:对于一组数据,,……,,
①线性相关系数,通常情况下当大于0.8时,认为两
个变量有很强的线性相关性.
②其回归直线的斜率和截距的最小二乘估计分别为:
;
科目:高中数学 来源: 题型:
【题目】已知函数(a为实数).
(1) 若函数在处的切线与直线平行,求实数a的值;
(2) 若,求函数在区间上的值域;
(3) 若函数在区间上是增函数,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列的前项和为,若数列的各项按如下规律排列;有如下运算结论:①;②数列是等比数列;③数列的前项和为;④若存在正整数,使得,则,
其中正确的结论是________(将你认为正确的结论序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“把你的心我的心串一串,串一株幸运草串一个同心圆…”一位数学老师一这句歌词为灵感构造了一道名为《爱2017》的题目,请你解答此题:设O为坐标原点,直线l与圆C1:x2+y2=1相切且与圆C2:x2+y2=r2(r>1)相交于A、B两不同点,已知E(x1,y1)、F(x2,y2)分别是圆C1、圆C2上的点.
(1)求r的值;
(2)求△OEF面积的最大值;
(3)若△OEF的外接圆圆心P在圆C1上,已知点D(3,0),求|DE|2+|DF|2的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集为[﹣5,﹣1],求实数a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若, ,则实数的取值范围为__________.
【答案】
【解析】当m=0时,符合题意。
当m≠0时, ,则0<m<4,
则0m<4
答案为: .
点睛:解本题的关键是处理二次函数在区间上大于0的恒成立问题,对于二次函数的研究一般从以几个方面研究:
一是,开口;
二是,对称轴,主要讨论对称轴与区间的位置关系;
三是,判别式,决定于x轴的交点个数;
四是,区间端点值.
【题型】填空题
【结束】
15
【题目】已知椭圆: 的右焦点为, 为直线上一点,线段交于点,若,则__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题:实数满足,其中;命题:方程表示双曲线.
(1)若,且为真,求实数的取值范围;
(2)若是的充分不必要条件,求实数的取值范围.
【答案】(1);(2).
【解析】试题分析:
先由命题解得;命题得,
(1)当,得命题,再由为真,得真且真,即可求解的取值范围.
(2)由是的充分不必要条件,则是的充分必要条件,根据则 ,即可求解实数的取值范围.
试题解析:
命题:由题得,又,解得;
命题: ,解得.
(1)若,命题为真时, ,
当为真,则真且真,
∴解得的取值范围是.
(2)是的充分不必要条件,则是的充分必要条件,
设, ,则 ;
∴∴实数的取值范围是.
【题型】解答题
【结束】
19
【题目】已知抛物线顶点在原点,焦点在轴上,又知此抛物线上一点到焦点的距离为6.
(1)求此抛物线的方程;
(2)若此抛物线方程与直线相交于不同的两点、,且中点横坐标为2,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(Ⅰ)若为偶函数,求的值并写出的增区间;
(Ⅱ)若关于的不等式的解集为,当时,求的最小值;
(Ⅲ)对任意的,,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则( )
A.△A1B1C1和△A2B2C2都是锐角三角形
B.△A1B1C1和△A2B2C2都是钝角三角形
C.△A1B1C1是钝角三角形,△A2B2C2是锐角三角形
D.△A1B1C1是锐角三角形,△A2B2C2是钝角三角形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com