精英家教网 > 高中数学 > 题目详情

【题目】已知命题:实数满足,其中;命题:方程表示双曲线.

(1)若,且为真,求实数的取值范围;

(2)若的充分不必要条件,求实数的取值范围.

【答案】(1);(2)

【解析】试题分析:

先由命题解;命题

(1)当,得命题,再由为真,得真且真,即可求解的取值范围.

(2)由的充分不必要条件,则的充分必要条件,根据则 ,即可求解实数的取值范围.

试题解析:

命题:由题得,又,解得

命题 ,解得

(1)若,命题为真时,

为真,则真且真,

解得的取值范围是

(2)的充分不必要条件,则的充分必要条件,

,则

∴实数的取值范围是

型】解答
束】
19

【题目】已知抛物线顶点在原点,焦点在轴上,又知此抛物线上一点到焦点的距离为6.

(1)求此抛物线的方程;

(2)若此抛物线方程与直线相交于不同的两点,且中点横坐标为2,求的值.

【答案】(1);(2)2.

【解析】试题分析:

(1)由题意设抛物线方程为,则准线方程为,解得,即可求解抛物线的方程;

(2)由消去,根据,解得,得到,即可求解的值.

试题解析:

(1)由题意设抛物线方程为),其准线方程为

到焦点的距离等于到其准线的距离,∴,∴

∴此抛物线的方程为

(2)由消去

∵直线与抛物线相交于不同两点,则有

解得

,解得(舍去).

∴所求的值为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校从参加高一年级期中考试的学生中抽出名学生,并统计了她们的数学成绩(成绩均为整数且满分为分),数学成绩分组及各组频数如下:

样本频率分布表:

分组

频数

频率

合计

(1)在给出的样本频率分布表中,求的值;

(2)估计成绩在分以上(含分)学生的比例;

(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在的学生中选两位同学,共同帮助成绩在中的某一位同学.已知甲同学的成绩为分,乙同学的成绩为分,求甲、乙两同学恰好被安排在同一小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱长为2的正方体ABCD-A1B1C1D1中,EF分别是DD1DB的中点,求证:

1EF∥平面ABC1D1

2EF⊥B1C

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡的株数:

温度(单位:℃)

21

23

24

27

29

32

死亡数(单位:株)

6

11

20

27

57

77

经计算:.

其中分别为试验数据中的温度和死亡株数,

(1)是否有较强的线性相关性? 请计算相关系数(精确到)说明.

(2)并求关于的回归方程(都精确到);

(3)用(2)中的线性回归模型预测温度为时该批紫甘薯死亡株数(结果取整数).

附:对于一组数据,……,

线性相关系数通常情况下当大于0.8时,认为两

个变量有很强的线性相关性

其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)如图所示,已知以点为圆心的圆与直线相切.过点的动直线与圆相交于两点,的中点,直线相交于点.

1)求圆的方程;

2)当时,求直线的方程.

3是否为定值?如果是,求出其定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,点的内心,记,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在桂林市某中学高中数学联赛前的模拟测试中,得到甲、乙两名学生的6次模拟测试成绩(百分制)的茎叶图.分数在85分或85分以上的记为优秀.

(1)根据茎叶图读取出乙学生6次成绩的众数,并求出乙学生的平均成绩以及成绩的中位数;

(2)若在甲学生的6次模拟测试成绩中去掉成绩最低的一次,在剩下5次中随机选择2次成绩作为研究对象,求在选出的成绩中至少有一次成绩记为优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为菱形,侧面为等边三角形,且侧面底面 分别为 的中点.

Ⅰ)求证: .

Ⅱ)求证:平面平面.

Ⅲ)侧棱上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案