精英家教网 > 高中数学 > 题目详情
9.下列函数中,为偶函数的是(  )
A.f(x)=xB.f(x)=sinxC.f(x)=$\frac{1}{x}$D.f(x)=x2

分析 根据函数奇偶性的定义进行判断即可.

解答 解:f(x)=x,f(x)=sinx,f(x)=$\frac{1}{x}$为奇函数,
f(x)=x2为偶函数,
故选:D

点评 本题主要考查函数的奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列可以唯一确定一个平面的是(  )
A.一个四边形的4个顶点
B.过一个定点,且与两条异面直线垂直
C.过平面外一个定点,且与这个平面平行
D.过平面外一个定点,且与这个平面垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,点C为半径是1的圆上一点,且劣弧长AC是劣弧长CB的一半,假设你在这个图形上随机地撒一粒豆子,则∠ABC及豆子落在阴影区域的概率分别是(  )
A.$\frac{π}{6}$,$\frac{\sqrt{3}}{2π}$B.$\frac{π}{3}$,$\frac{\sqrt{3}}{2π}$C.$\frac{π}{6}$,$\frac{\sqrt{3}}{2}$D.$\frac{π}{6}$,$\frac{3}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数$y={(\frac{1}{3})^{cosx}}$的单调递增区间为[2kπ,2kπ+π],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=2lnx+1在点(1,f(1))处的切线为l,点(an,an+1)在l上,且a1=2,则a2015=(  )
A.22014-1B.22014+1C.22015-1D.22015+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆E的中心在原点,一个焦点为F(1,0),定点A(-1,1)在E的内部,若椭圆E上存在一点P使得|PA|+|PF|=7,则椭圆E的方程可以是(  )
A.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{7}$=1D.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果我们定义[a,b,c]为二次函数y=ax2+bx+c的特征数,那么下面给出的特征数为[2m,1-m,-1-m]的函数的一些结论:
①当m=-3时,函数图象的顶点坐标是( $\frac{1}{3}$,$\frac{8}{3}$ );
②当m>0时,函数图象截x轴所得的线段长度大于 $\frac{3}{2}$;
③当m<0时,函数在x>$\frac{1}{4}$ 时,y随x的增大而减小;
④当m≠0时,函数图象恒过同一个点.
其中正确的结论有(  )
A.①②③④B.①②④C.①③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b∈R,i是虚数单位,若a+i与2+bi互为共轭复数,则在复平面内,复数z=$\frac{a+bi}{1+i}$所对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=|x+1|+|x-a|,若不等式f(x)≥6的解集为(-∞,-2]∪[4,+∞),则实数a的值为(  )
A.-3B.$\sqrt{3}$C.3D.$-\sqrt{3}$

查看答案和解析>>

同步练习册答案