精英家教网 > 高中数学 > 题目详情
7.椭圆my2+x2=1的一个顶点在抛物线$y=\frac{1}{2}{x^2}$的准线上,则椭圆的离心率(  )
A.$\frac{{\sqrt{63}}}{8}$B.$\frac{{\sqrt{3}}}{2}$C.4D.$\frac{{\sqrt{5}}}{2}$

分析 根据题意,由抛物线的方程可得其准线方程,由椭圆的方程可得其顶点坐标,分析可得$\sqrt{\frac{1}{m}}$=$\frac{1}{2}$,解可得m=4,即可得椭圆的标准方程,由离心率公式计算可得答案.

解答 解:抛物线的方程为$y=\frac{1}{2}{x^2}$,则其标准方程为x2=2y,
其准线方程为y=-$\frac{1}{2}$;
椭圆my2+x2=1的标准方程为:x2+$\frac{{y}^{2}}{\frac{1}{m}}$=1,其顶点坐标为(±1,0)、(0,±$\sqrt{\frac{1}{m}}$),
若椭圆的一个顶点在抛物线$y=\frac{1}{2}{x^2}$的准线上,
则有$\sqrt{\frac{1}{m}}$=$\frac{1}{2}$,解可得m=4,
即椭圆的标准方程为$\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{\frac{1}{4}}$=1,c=$\sqrt{1-\frac{1}{4}}$=$\frac{\sqrt{3}}{2}$,
则椭圆的离心率e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$;
故选:B.

点评 本题考查椭圆的几何性质,关键是掌握椭圆方程的形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知a,b,c∈(0,1),且ab+bc+ac=1,则$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$的最小值为(  )
A.$\frac{{3-\sqrt{3}}}{2}$B.$\frac{{9-\sqrt{3}}}{2}$C.$\frac{{6-\sqrt{3}}}{2}$D.$\frac{{9+3\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列求导结果正确的是(  )
A.(a-x2)′=1-2xB.(2$\sqrt{{x}^{3}}$)′=3$\sqrt{x}$C.(cos60°)′=-sin60°D.[ln(2x)]′=$\frac{1}{2x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.我们知道,在长方形ABCD中,如果设AB=a,BC=b,那么长方形ABCD的外接圆的半径R满足4R2=a2+b2,类比上述结论,在长方体ABCD-A1B1C1D1中,如果设AB=a,AD=b,AA1=c,那么长方体ABCD-A1B1C1D1的外接球的半径R满足的关系式是(  )
A.4R2=a3+b3+c3B.8R2=a2+b2+c2C.8R3=a3+b3+c3D.4R2=a2+b2+c2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$\vec a=(2,t,t),\vec b=(1-t,2t-1,0)$,则$|\vec b-\vec a|$的最小值是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p1:函数y=ex-e-x在R为增函数,p2:函数y=ex+e-x在(0,1)为减函数.则命题p1∧p2;p1∨p2;p1∧¬p2;¬p1∨p2中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设命题p:?x∈[-1,1],${x^3}-\frac{3}{2}{x^2}+2>a$.命题q:?x∈[-1,1],${x^3}-\frac{3}{2}{x^2}+2>a$.如果命题“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线l与抛物线y2=2px(p>0)交于A,B两点,D为坐标原点,且OA⊥OB,OD⊥AB于点D,点D的坐标为(1,2),则p=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知圆x2+y2=1和圆外一点P(1,2),过点P作圆的切线,则切线方程为x=1或3x-4y+5=0.

查看答案和解析>>

同步练习册答案