精英家教网 > 高中数学 > 题目详情
在直角梯形PBCD中,,A为PD的中点,如下左图。将沿AB折到的位置,使,点E在SD上,且,如下图。
(1)求证:平面ABCD;
(2)求二面角E—AC—D的正切值.
(1)在图中,由题意可知为正方形,所以在图中,
四边形ABCD是边长为2的正方形,
因为,ABBC,
所以BC平面SAB,
平面SAB,所以BCSA,又SAAB,
所以SA平面ABCD,  
(2)

试题分析:(1)证明:在图中,由题意可知,

为正方形,所以在图中,
四边形ABCD是边长为2的正方形,
因为,ABBC,
所以BC平面SAB,
平面SAB,所以BCSA,又SAAB,
所以SA平面ABCD,  
(2)在AD上取一点O,使,连接EO。
因为,所以EO//SA
所以EO平面ABCD,过O作OHAC交AC于H,连接EH,
则AC平面EOH,所以ACEH。
所以为二面角E—AC—D的平面角,
中,…11分
,即二面角E—AC—D的正切值为
点评:本题中第二问求二面角采用的是作角求角的思路,在作角时常用三垂线定理法;此外还可用空间向量的方法求解;以A为原点AB,AD,AS为x,y,z轴建立坐标系,写出各点坐标,代入向量计算公式即可
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知各顶点都在同一个球面上的正四棱锥高为3,体积为6,则这个球的表面积是_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是 (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在△中,,点上,.沿将△翻折成△,使平面平面;沿将△翻折成△,使平面平面

(Ⅰ)求证:平面
(Ⅱ)设,当为何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱中,的中点,是线段上的动点(与端点不重合),且.

(1)若,求证:;
(2)若直线与平面所成角的大小为,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

(Ⅰ)求多面体EF-ABCD的体积;
(Ⅱ)求直线BD与平面BCF所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点EF分别在棱BB1CC1上,且BEBBC1FCC1.

(1)求异面直线AEA1 F所成角的大小;
(2)求平面AEF与平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在平行四边ABCD中,,,若将其沿BD折成直二面角 A-BD-C,则三棱锥A—BCD的外接球的体积为_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知四棱锥的底面为平行四边形,分别是棱的中点,平面与平面交于,求证:

(1)平面
(2)

查看答案和解析>>

同步练习册答案