精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}是等差数列,且a2=﹣14,a5=﹣5.
(1)求数列{an}的通项an
(2)求{an}前n项和Sn的最小值.

【答案】
(1)解:设{an}的公差为d,由已知条件得

解得 a1=﹣17,d=3.

∴an=﹣17+(n﹣1)3=3n﹣20


(2)解:

时Sn有最小值 又n∈N+

∴n=6时,f(x)=x2﹣2x+2lnx取到最小值﹣57


【解析】(1)利用a2=﹣14,a5=﹣5,建立方程组,求出首项与公差,即可求数列{an}的通项an;(2)路配方法求{an}前n项和Sn的最小值.
【考点精析】解答此题的关键在于理解等差数列的通项公式(及其变式)的相关知识,掌握通项公式:,以及对等差数列的前n项和公式的理解,了解前n项和公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中a,b,c∈R.
(Ⅰ)若a=b=1,求函数f(x)的单调区间;
(Ⅱ)若a=0,且当x≥0时,f(x)≥1总成立,求实数b的取值范围;
(Ⅲ)若a>0,b=0,若f(x)存在两个极值点x1 , x2 , 求证;f(x1)+f(x2)<e.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

部分图像如图所示.

(Ⅰ)求函数的解析式及图像的对称轴方程;

(Ⅱ)把函数图像上点的横坐标扩大到原来的倍(纵坐标不变),再向左平移

个单位,得到函数的图象,求关于的方程

时所有的实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线C1的极坐标方程ρ2cos2θ=8,曲线C2的极坐标方程为θ= ,曲线C1 , C2相交于A,B两点.以极点O为原点,极轴所在直线为x轴建立平面直角坐标系,已知直线l的参数方程为 (t为参数).
(1)求A,B两点的极坐标;
(2)曲线C1与直线l分别相交于M,N两点,求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2分别是长轴长为2 的椭圆C: + =1(a>b>0)的左右焦点,A1 , A2是椭圆C的左右顶点,P为椭圆上异于A1 , A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为﹣
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点N,点N横坐标的取值范围是(﹣ ,0),求线段AB长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.

(1)求椭圆的方程式;

(2)已知动直线与椭圆相交于两点.

①若线段中点的横坐标为,求斜率的值;

②已知点,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为菱形,

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.

(1)根据茎叶图判断哪个班的平均身高较高;

(2)计算甲班的样本方差;

(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:圆心到直线的距离与圆的半径之比为直线关于圆的距离比.

(1)设圆求过2,0的直线关于圆的距离比的直线方程;

(2)若圆轴相切于点0,3)且直线= 关于圆的距离比,求此圆的的方程;

(3)是否存在点,使过的任意两条互相垂直的直线分别关于相应两圆的距离比始终相等?若存在,求出相应的点点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案