【题目】已知F1 , F2分别是长轴长为2 的椭圆C: + =1(a>b>0)的左右焦点,A1 , A2是椭圆C的左右顶点,P为椭圆上异于A1 , A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为﹣ .
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点N,点N横坐标的取值范围是(﹣ ,0),求线段AB长的取值范围.
【答案】解:(Ⅰ)由题意可知2a=2 ,则a= ,设P(x0 , y0),
∵直线PA与OM的斜率之积恒为﹣ ,∴ × =﹣ ,
∴ + =1,
∴b=1,
椭圆C的方程 ;
(Ⅱ)设直线l:y=k(x+1),A(x1 , y1),B(x2 , y2),
联立直线与椭圆方程: ,得:(2k2+1)x2+4k2x+2k2﹣2=0,
则x1+x2=﹣ ,x1x2= ,
则y1+y2=k(x1+x2+2)= ,
∴AB中点Q(﹣ , ),
QN直线方程为:y﹣ =﹣ (x+ )=﹣ x﹣ ,
∴N(﹣ ,0),由已知得﹣ <﹣ <0,
∴0<2k2<1,
∴|AB|= =
= = (1+ ),
∵ <<12k2+1<1,
∴|AB|∈( ,2 ),
线段AB长的取值范围( ,2 )
【解析】(Ⅰ)利用椭圆Q的长轴长为2 ,求出a= ,设P(x0 , y0),通过直线PA与OM的斜率之积恒为,﹣ .化简求出b,即可得到椭圆方程;(Ⅱ)将直线方程代入椭圆方程,由此利用韦达定理、中点坐标公式、直线方程、弦长公式,能求出线段AB长的取值范围.
科目:高中数学 来源: 题型:
【题目】已知坐标平面上点与两个定点, 的距离之比等于5.
(1)求点的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为,过点的直线被所截得的线段的长为8,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P( ,1),Q(cosx,sinx),O为坐标原点,函数f(x)= .
(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;
(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2),且x∈(﹣1,0)时,f(x)=2x+ ,则f(log220)=( )
A.﹣1
B.
C.1
D.﹣
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:
女性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 20 | 40 | 80 | 50 | 10 | |
男性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 45 | 75 | 90 | 60 | 30 |
(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);
(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:①残差可用来判断模型拟合的效果;
②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;
③线性回归方程必过 ;
④在一个2×2列联表中,由计算得=13.079,则有99%的把握确认这两个变量间有关系(其中);
其中错误的个数是( )
A. 0 B. 1 C. 2 D. 3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从全校参加数学竞赛的学生的试卷中抽取一个样本,考察竞赛的成绩分布情况,将样本分成5组,绘成频率分布直方图,图中从左到右各小组的小长方形的高之比为1:3:6:4:2,最右边一组频数是6,请结合直方图提供的信息,解答下列问题:
(1)样本的容量是多少?
(2)列出频率分布表;
(3)估计这次竞赛中,成绩高于60分的学生占总人数的百分比;
(4)成绩落在哪个范围内的人数最多?并求出该小组的频数,频率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求f(2),f(x);
(2)证明:函数f(x)在[1,17]上为增函数;
(3)试求函数f(x)在[1,17]上的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com