精英家教网 > 高中数学 > 题目详情
11.抛物线x2=4y的焦点为F,经过其准线与y轴的交点Q的直线与抛物线切于点P,则△FPQ外接圆的标准方程为(x-1)2+y2=2或(x+1)2+y2=2.

分析 确定抛物线的焦点与在点Q处的切线,求出P的坐标,再利用PF⊥QF,即可求得△PFQ的外接圆的方程.

解答 解:抛物线x2=4y的焦点F(0,1),Q(0,-1)
求导函数可得y′=$\frac{x}{2}$,.
设P(m,n),则切线方程为y-n=$\frac{m}{2}$(x-m),即y=$\frac{m}{2}$x-n,
代入(0,-1)可得n=1,
∴m=±2
∴PF⊥QF
∴△PFQ的外接圆的直径为PQ
∵P(±2,1)、Q(0,-1)
∴圆心坐标为(-1,0),半径为$\sqrt{2}$
∴△PFQ的外接圆的方程为(x-1)2+y2=2或(x+1)2+y2=2.
故答案为(x-1)2+y2=2或(x+1)2+y2=2.

点评 本题考查抛物线的性质与切线,考查三角形的外接圆,解题的关键是求出抛物线的切线,确定三角形三个顶点的坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知关于x的方程-2x2+bx+c=0,若b、c∈{0,1,2,3,4},记“该方程有实数根x1、x2且满足-1≤x1≤x2≤2”为事件A,则事件A发生的概率为$\frac{16}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列给出的赋值语句中正确的是(  )
A.4=MB.M=-MC.B=A=3D.x+y=3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.阅读如图的程序框图,该程序输出的结果是(  )
A.12B.132C.11880D.1320

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知在数轴上0和3之间任取一实数x,则使“log2x<1”的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{2}{3}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{1}{2}$,圆x2+y2=$\frac{12}{7}$与直线$\frac{x}{a}$+$\frac{y}{b}$=1相切,O为坐标原点.
(1)求椭圆C的方程;
(2)过点Q(-4,0)任作一直线l交椭圆C于M,N两点,记$\overrightarrow{MQ}$=λ$\overrightarrow{QN}$,若在线段MN上取一点R,使得$\overrightarrow{MR}$=-λ$\overrightarrow{RN}$,试判断当直线l运动时,点R是否在某一定直一上运动?若是,请求出该定直线的方程;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知变量x,y的取值如表:
  x0134
  Y2.24.34.86.7
利用散点图观察,y与x线性相关,其回归直线方程为$\stackrel{∧}{y}$=0.95x+a,则a的值为(  )
A.0B.2.2C.2.6D.3.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)=$\left\{\begin{array}{l}x+1,x≤0\\ x+\frac{4}{x}-a,x>0\end{array}$,若f[f(-$\frac{1}{2}$)]=$\frac{1}{2}$,则a=8,若f(x)的值域为R,则实数a的取值范围是a≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)=ln(\frac{1}{2}x+m)$,曲线y=f(x)在点$(-\frac{3}{2},f(-\frac{3}{2}))$处的切线与直线x+2y=0垂直.
(1)求实数m的值;
(2)若函数g(x)=af(x)+x2有两个极值点x1,x2,且x1<x2,求证:$0<\frac{{g({x_2})}}{x_1}<2ln2-1$.

查看答案和解析>>

同步练习册答案