精英家教网 > 高中数学 > 题目详情
8.已知二阶矩阵A=$[\begin{array}{l}{3}&{5}\\{0}&{-2}\end{array}]$和向量$\overrightarrow{β}$=$[\begin{array}{l}{1}\\{-1}\end{array}]$,则A6$\overrightarrow{β}$=$[\begin{array}{l}{64}\\{-64}\end{array}]$.(用数字表示)

分析 求出矩阵A属于特征值-2的特征向量为$\overrightarrow{β}$=$[\begin{array}{l}{1}\\{-1}\end{array}]$,利用特征向量的定义与性质即可算出A6$\overrightarrow{β}$的值.

解答 解:矩阵A的特征多项式为f(λ)=(λ-3)(λ+2)
令f(λ)=0,得λ=3或λ=-2
将λ=-2代入二元一次方程组,得$\left\{\begin{array}{l}{-5x-5y=0}\\{0•x+0•y=0}\end{array}\right.$,取x=1得y=-1
∴矩阵A属于特征值-2的特征向量为$\overrightarrow{β}$=$[\begin{array}{l}{1}\\{-1}\end{array}]$,
∴A6$\overrightarrow{β}$=λ6$\overrightarrow{β}$=64$[\begin{array}{l}{1}\\{-1}\end{array}]$=$[\begin{array}{l}{64}\\{-64}\end{array}]$,
故答案为$[\begin{array}{l}{64}\\{-64}\end{array}]$.

点评 本题给出二阶矩阵,求矩阵A的特征值和特征向量.着重考查了特征向量的定义、求法及其性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图,则这500件产品质量指标值的样本方差s2是110(同一组中的数据用该组区间的中点值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,F为椭圆C的右焦点,过点F作x轴的垂线交椭圆C于一点$E({1,\frac{3}{2}})$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A,B为椭圆C的左右顶点,P为椭圆C上异于A,B的任意一点,直线AP、BP分别交直线l:x=m(m>a)于M,N两点,
(ⅰ)设直线AP、BP的斜率分别为k1,k2,求证:k1k2为定值;
(ⅱ)若以线段MN为直径的圆过点F,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.6个学生站成一排,学生甲与学生乙相邻,学生甲与学生丙不相邻,则不同的排法有192.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知Sn是等差数列{an}的前n项和,若a1=-2017,$\frac{{{S_{2014}}}}{2014}-\frac{{{S_{2008}}}}{2008}$=6,则S2017=-2017.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在等差数列{an}中,若a3+a4+a5+a6+a7=25,则a2+a8=10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$y=\frac{{{x^2}+7x+10}}{x+1}({x>-1})$的最小值为(  )
A.2B.7C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=Asin({ωx+φ}),({A>0,ω>0,0<φ<\frac{π}{2}}),x∈R,f(x)$的最小值为-4,f(0)=2$\sqrt{2}$,且相邻两条对称轴之间的距离为π.
(I)当$x∈[{-\frac{π}{2},\frac{π}{2}}]$时,求函数f(x)的最大值和最小值;
(II)若$x∈({\frac{π}{2},π})$,且$f(x)=1,求cos({x+\frac{5π}{12}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=$\sqrt{2}$,O为底面中心.
(1)求证:A1O⊥平面BC1D;
(2)求三棱锥A1-BC1D的体积.

查看答案和解析>>

同步练习册答案