精英家教网 > 高中数学 > 题目详情
3.已知Sn是等差数列{an}的前n项和,若a1=-2017,$\frac{{{S_{2014}}}}{2014}-\frac{{{S_{2008}}}}{2008}$=6,则S2017=-2017.

分析 Sn是等差数列{an}的前n项和,∴数列{$\frac{{S}_{n}}{n}$}是等差数列,设公差为d,$\frac{{S}_{1}}{1}$=-2017,利用$\frac{{{S_{2014}}}}{2014}-\frac{{{S_{2008}}}}{2008}$=6,可得6d=6,解得d.即可得出.

解答 解:∵Sn是等差数列{an}的前n项和,
∴数列{$\frac{{S}_{n}}{n}$}是等差数列,设公差为d.
$\frac{{S}_{1}}{1}$=-2017,
∵$\frac{{{S_{2014}}}}{2014}-\frac{{{S_{2008}}}}{2008}$=6,∴6d=6,解得d=1,
∴$\frac{{S}_{2017}}{2017}$=-2017+(2017-1)×1=-1,
解得S2017=-2017.
故答案为:-2017.

点评 本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在等比数列{an}中,a1=2,an=-64,Sn=-42,则公比q等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如果函数f(x)=3sin(2x+ϕ)的图象关于直线$x=\frac{2}{3}π$对称,那么|φ|的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某校举行了以“重温时代经典,唱响回声嘹亮”为主题的“红歌”歌咏比赛.该校高一年级有1,2,3,4四个班参加了比赛,其中有两个班获奖.比赛结果揭晓之前,甲同学说:“两个获奖班级在2班、3班、4班中”,乙同学说:“2班没有获奖,3班获奖了”,丙同学说:“1班、4班中有且只有一个班获奖”,丁同学说:“乙说得对”.已知这四人中有且只有两人的说法是正确的,则这两人是(  )
A.乙,丁B.甲,丙C.甲,丁D.乙,丙

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,正方形ABCD和梯形ACEF所在的平面相互垂直,EF∥AC,AF⊥AC,G为AD的中点,$AB=AF=2,EF=\sqrt{2}$.
(1)求证:FG∥平面CDE;
(2)求二面角A-DF-E的余弦值;
(3)设点P是线段DE上的动点,是否存在点P使得直线BP⊥平面DEF,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知二阶矩阵A=$[\begin{array}{l}{3}&{5}\\{0}&{-2}\end{array}]$和向量$\overrightarrow{β}$=$[\begin{array}{l}{1}\\{-1}\end{array}]$,则A6$\overrightarrow{β}$=$[\begin{array}{l}{64}\\{-64}\end{array}]$.(用数字表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知曲线C的极坐标方程是ρ=2cosθ+4sinθ,P点极坐标为$(3,\frac{π}{2})$,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy,在平面直角坐标系中,直线l经过点P,倾斜角为$\frac{π}{3}$.
(1)写出曲线C的直角坐标方程和直线l的参数方程;
(2)设直线l与曲线C相交于A,B两点,求$\frac{1}{|PA|}+\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.请推导等差数列及等比数列前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点A在椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$上,点P满足$\overrightarrow{AP}=({λ-1})\overrightarrow{OA}({λ∈R})$,且$\overrightarrow{OA}•\overrightarrow{OP}=72$,则线段OP在x轴上的投影长度的最大值为15.

查看答案和解析>>

同步练习册答案