| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
分析 由条件利用正弦函数的图象的对称性,可得f(0)=f($\frac{4π}{3}$),由此求得|φ|的最小值.
解答 解:函数f(x)=3sin(2x+ϕ)的图象关于直线$x=\frac{2}{3}π$对称,
则f(0)=f($\frac{4π}{3}$),即3sinϕ=3sin($\frac{8π}{3}$+ϕ),
即 sinϕ=sin($\frac{2π}{3}$+ϕ)=$\frac{\sqrt{3}}{2}$cosϕ+(-$\frac{1}{2}$)sinϕ,∴tanϕ=$\frac{\sqrt{3}}{3}$,∴|ϕ|的最小值为$\frac{π}{6}$,
故选:B.
点评 本题主要考查正弦函数的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 3 | C. | $6\sqrt{2}$ | D. | $3\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4$\sqrt{3}$π | B. | $\frac{27\sqrt{3}π}{2}$ | C. | 27π | D. | 9π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 组号 | 分组 | 频数 |
| 1 | [0.5,1) | 20 |
| 2 | [1,1.5) | 40 |
| 3 | [1.5,2) | 80 |
| 4 | [2,2.5) | 120 |
| 5 | [2.5,3) | 60 |
| 6 | [3,3.5) | 40 |
| 7 | [3.5,4) | 20 |
| 8 | [4,4.5) | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com