| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
分析 据题意可设$|\overrightarrow{a}|=|\overrightarrow{b}|=m$,并且m≠0,进行数量积的运算,由$(\overrightarrow{a}-2\overrightarrow{b})•\overrightarrow{a}=0$便可求出$cos<\overrightarrow{a},\overrightarrow{b}>$的值,进而得出$\overrightarrow{a},\overrightarrow{b}$的夹角.
解答 解:设$|\overrightarrow{a}|=|\overrightarrow{b}|=m$,则:
$(\overrightarrow{a}-2\overrightarrow{b})•\overrightarrow{a}={\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow{b}$=${m}^{2}-2{m}^{2}cos<\overrightarrow{a},\overrightarrow{b}>$=0;
∵m≠0;
∴$cos<\overrightarrow{a},\overrightarrow{b}>=\frac{1}{2}$;
∴$\overrightarrow{a},\overrightarrow{b}$的夹角为$\frac{π}{3}$.
故选B.
点评 考查向量数量积的运算及计算公式,向量夹角的范围,已知三角函数值求角.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3$\sqrt{3}$ | B. | 4$\sqrt{3}$ | C. | 6$\sqrt{3}$ | D. | 9$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com