分析 (Ⅰ)设出圆O的半径为r,利用圆心到直线的距离d与弦长的一半组成直角三角形,利用勾股定理求出半径,即可写出圆的方程.
(Ⅱ)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB与圆x2+y2=2相切.
解答 解:(Ⅰ)设圆O的半径为r,则圆心O到直线y=x-1的距离为d=$\frac{1}{\sqrt{2}}$,
又直线被圆O所截得的弦长为$\sqrt{6}$,
所以r2=$\frac{1}{2}$+$\frac{6}{4}$=2,
所以圆O的方程为x2+y2=2.
(Ⅱ)直线AB与圆x2+y2=2相切.
证明如下:
设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.
∵OA⊥OB,
∴tx0+2y0=0,解得t=-$\frac{2{y}_{0}}{{x}_{0}}$.
当x0=t时,y0=-$\frac{{t}^{2}}{2}$,代入椭圆C的方程,得t=±$\sqrt{2}$.
故直线AB的方程为x=±$\sqrt{2}$,圆心O到直线AB的距离d=$\sqrt{2}$.
此时直线AB与圆x2+y2=2相切.
当x0≠t时,直线AB的方程为y-2=$\frac{{y}_{0}-2}{{x}_{0}-t}$(x-t),
即(y0-2)x-(x0-t)y+2x0-ty0=0.
圆心O到直线AB的距离d=$\frac{|2{x}_{0}-t{y}_{0}|}{\sqrt{({y}_{0}-2)^{2}+({x}_{0}-t)^{2}}}$=$\frac{|2{x}_{0}+\frac{2{{y}_{0}}^{2}}{{x}_{0}}|}{\sqrt{{{x}_{0}}^{2}+{{y}_{0}}^{2}+\frac{4{{y}_{0}}^{2}}{{{x}_{0}}^{2}}+4}}$=$\sqrt{2}$.
此时直线AB与圆x2+y2=2相切.
点评 本题考查了直线与圆的方程的应用问题,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 3 | C. | $6\sqrt{2}$ | D. | $3\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
| 频数 | 20 | 40 | 80 | 50 | 10 |
| 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
| 频数 | 45 | 75 | 90 | 60 | 30 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (¬p)∨q | B. | p∧q | C. | (¬p)∨(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com