精英家教网 > 高中数学 > 题目详情
10.已知命题p:负数的立方都是负数,命题q:正数的对数都是负数,则下列命题中是真命题的是(  )
A.(¬p)∨qB.p∧qC.(¬p)∨(¬q)D.(¬p)∧(¬q)

分析 先判定命题p与q的真假,再利用复合命题真假的判定方法即可判断出结论.

解答 解:命题p:负数的立方都是负数,是真命题.
命题q:正数的对数都是负数,是假命题,例如lg10=1.
则下列命题中是真命题的是(¬p)∨(¬q).
故选:C.

点评 本题考查了复合命题真假的判定方法、实数的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,已知直线y=x-1被圆心在原点O的圆截得的弦长为$\sqrt{6}$.
(Ⅰ)求圆C的方程;
(Ⅱ)若点A在椭圆2x2+y2=4上,点B在直线x=2上,且OA⊥OB,试判断直线AB与圆C的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,AP⊥BP,AC⊥BC,∠PAB=60°,∠ABC=45°,D是AB中点,E,F分别为PD,PC的中点.
(Ⅰ)求证:AE⊥平面PCD;
(Ⅱ)求二面角B-PA-C的余弦值;
(Ⅲ)在棱PB上是否存在点M,使得CM∥平面AEF?若存在,求$\frac{PM}{PB}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,正方形ABCD和梯形ACEF所在的平面相互垂直,EF∥AC,AF⊥AC,G为AD的中点,$AB=AF=2,EF=\sqrt{2}$.
(1)求证:FG∥平面CDE;
(2)求二面角A-DF-E的余弦值;
(3)设点P是线段DE上的动点,是否存在点P使得直线BP⊥平面DEF,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.tan330°=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知曲线C的极坐标方程是ρ=2cosθ+4sinθ,P点极坐标为$(3,\frac{π}{2})$,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy,在平面直角坐标系中,直线l经过点P,倾斜角为$\frac{π}{3}$.
(1)写出曲线C的直角坐标方程和直线l的参数方程;
(2)设直线l与曲线C相交于A,B两点,求$\frac{1}{|PA|}+\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.等差数列{an}的前n项和为Sn,且$\frac{S_6}{S_3}=4$,则$\frac{S_9}{S_6}$=(  )
A.$\frac{9}{4}$B.$\frac{2}{3}$C.$\frac{5}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若规定$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,则$|\begin{array}{l}{1}&{2}\\{x}&{{x}^{2}}\end{array}|$<3的解集是{x|-1<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=|log2x|,若实数a,b(a<b)满足f(a)=f(b),则a+2017b的范围是(2018,+∞).

查看答案和解析>>

同步练习册答案