精英家教网 > 高中数学 > 题目详情
1.曲线y=$\sqrt{x}$和直线y=x围成的图形面积是$\frac{1}{6}$.

分析 首先求出交点,然后利用定积分表示曲边梯形的面积,计算求面积.

解答 解:曲线$y=\sqrt{x}$和直线y=x交点为:(1,1),所以围成的图形面积为${∫}_{0}^{1}(\sqrt{x}-x)dx$=($\frac{2}{3}{x}^{\frac{3}{2}}-\frac{1}{2}{x}^{2}$)|${\;}_{0}^{1}$=$\frac{1}{6}$;
故答案为:$\frac{1}{6}$.

点评 本题考查了定积分的意义求曲边梯形,关键是正确利用定积分表示面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若关于x的不等式组$\left\{\begin{array}{l}{{x}^{3}+3{x}^{2}-x-3>0}\\{{x}^{2}-2ax-1≤0}\end{array}\right.$(a>0)的整数解有且仅有一个,则a的取值范围为(  )
A.[$\frac{3}{4}$,$\frac{4}{3}$]B.[$\frac{3}{4}$,$\frac{4}{3}$)C.($\frac{3}{4}$,$\frac{4}{3}$)D.($\frac{3}{4}$,$\frac{4}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若x,y满足x2-2xy+3y2=4,则$\frac{1}{{x}^{2}+{y}^{2}}$的最大值与最小值的和是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}前n项的和为Sn,且(2n-1)Sn+1-(2n+1)Sn=4n2-1(n∈N
(1)求a1
(2)求Sn,an
(3)设bn=|an-30|,求{bn}的前n项的和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}中,2Sn=n2+n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=2an•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=-$\frac{{x}^{2}+2x+4}{x}$,g(x)=lnx-$\frac{1}{2}$x2+$\frac{9}{2}$,实数a,b满足a<b<0,若?x1∈[a,b],?x2∈(0,+∞),使得f(x1)=g(x2)成立,则b-a的最大值为(  )
A.3$\sqrt{2}$B.4C.4$\sqrt{3}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.各项均不相等的等差数列{an}前n项和为Sn,已知S5=40,且a1,a3,a7成等比数列.
(I)求数列{an}的通项公式;
(Ⅱ)令bn=(-1)n$\frac{2n+3}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.点P是在△ABC的内心,已知AB=3,AC=4,∠A=90°.存在实数λ,μ,使$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则(  )
A.λ=$\frac{1}{3}$,μ=$\frac{1}{4}$B.λ=$\frac{1}{3}$,μ=$\frac{2}{9}$C.λ=$\frac{1}{2}$,μ=$\frac{1}{3}$D.λ=$\frac{1}{4}$,μ=$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知i为虚数单位,复数z=-$\frac{1}{3}$+$\frac{2\sqrt{2}}{3}$i的共轭复数为$\overline{z}$,则$\overline{z}$的虚部为(  )
A.$\frac{2\sqrt{2}}{3}$B.-$\frac{2\sqrt{2}}{3}$C.$\frac{2\sqrt{2}}{3}$iD.-$\frac{2\sqrt{2}}{3}$i

查看答案和解析>>

同步练习册答案