精英家教网 > 高中数学 > 题目详情
8.已知边长为2的正方形ABCD的四个顶点在球O的球面上,球O的表面积为64π,则四棱锥O-ABCD的体积为$\frac{4\sqrt{14}}{3}$.

分析 作平面ABCD的垂线OM,则M为正方形中心,求出OA,AM,OM,然后求解四棱锥O-ABCD的体积.

解答 解:过O作OM⊥平面ABCD,垂足为M,则M为正方形ABCD的中心.
∵正方形ABCD的边长为2,∴AC=2$\sqrt{2}$,AM=$\frac{1}{2}$AC=$\sqrt{2}$,球O的表面积为64π,
∵S球O=4πr2=64π,∴球O的半径OA=r=4.
∴OM=$\sqrt{{4}^{2}-({\sqrt{2})}^{2}}$=$\sqrt{14}$.
则四棱锥O-ABCD的体积为:$\frac{1}{3}×2×2×\sqrt{14}$=$\frac{4\sqrt{14}}{3}$
故答案为:$\frac{4\sqrt{14}}{3}$.

点评 本题考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、推理论证能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知直线l:(2+m)x+(1-2m)y+4-3m=0.
(1)求证:不论m为何实数,直线l恒过一定点M;
(2)过定点M作一条直线l1,使夹在两坐标轴之间的线段被M点平分,求直线l1的方程.
(3)若直线l与两坐标轴的负半轴围成的三角形面积最小,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时,f(x)=$\left\{\begin{array}{l}{-4{x}^{2}+2,-1≤x≤0}\\{x,0≤x<1}\end{array}\right.$,则f($\frac{3}{2}$)=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x+$\frac{{a}^{2}}{x}$,g(x)=x+lnx,其中a>0.
(1)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值;
(2)若对任意的x1,x2∈[1,e]都有f(x1)≥g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.满足z(2+i)=2-i(i为虚数单位)的复数z在复平面内对应的点所在象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设正项等比数列{an}满足:an•an+1=4n+6,则a100=(  )
A.2211B.($\sqrt{2}$)211C.4211D.2105

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设$\overrightarrow{a}$=(x,2),$\overrightarrow{b}$=(x-2,2x),当$\overrightarrow{a}$•$\overrightarrow{b}$最小时,cos<$\overrightarrow{a}$,$\overrightarrow{b}$>的值为(  )
A.-$\frac{\sqrt{65}}{65}$B.0C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在R上的函数f(x)=log2(ax-b+1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是(  )
A.$0<\frac{1}{a}<\frac{1}{b}<1$B.$0<\frac{1}{b}<a<1$C.$0<b<\frac{1}{a}<1$D.$0<\frac{1}{a}<b<1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法正确的个数是(  )
①“m=-1”是“直线mx+(2m-1)y+1=0和直线3x+my+2=0垂直”的充要条件;
②已知$f(x)={2014^x}•|{{{log}_{\frac{1}{2014}}}x}|-1$,则函数f(x)有2个零点;
③命题“?x∈R,x3-x2+1≤0”的否定是“?x0∈R,${x_0}^3-{x_0}^2+1>0$”
A.1B.2C.3D.0

查看答案和解析>>

同步练习册答案