精英家教网 > 高中数学 > 题目详情
已知cosα=
13
14
,cos(α-β)=-
1
7
,0<α<
π
2
<β<π.
求:(1)tan2α;(2)β
考点:两角和与差的余弦函数,二倍角的正切
专题:三角函数的求值
分析:(1)由同角三角函数的基本关系可得tanα,代入二倍角的正切公式计算可得;(2)由角的范围和已知可得sin(α-β),而cosβ=cos[α-(α-β)],代值计算可得其值,由反三角函数可得β.
解答: 解:(1)∵0<α<
π
2
,cosα=
13
14

∴sinα=
1-(
13
14
)2
=
3
3
14

∴tanα=
sinα
cosα
=
3
3
13

∴tan2α=
2tanα
1-tan2α
=
39
3
71

(2)∵0<α<
π
2
<β<π,
∴-π<α-β<0,
∵cos(α-β)=-
1
7
<0,
∴∴-π<α-β<-
π
2

∴sin(α-β)=-
1-(-
1
7
)2
=
4
3
7

∴cosβ=cos[α-(α-β)]
=cosαcos(α-β)+sinαsin(α-β)
=
13
14
×(-
1
7
)
+
3
3
14
×
4
3
7
=
23
98

∴β=arccos
23
98
点评:本题考查两角和与差的三角函数公式,涉及二倍角的正切公式,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足Sn+an=2n+1(n≥1,且n∈N*
(1)求出a1,a2,a3的值;
(2)由(1)猜想出数列{an}的通项公式an,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cosx•sin(x+
π
3
)-
3
sin2x+sinx•cosx.
(1)求函数f(x)的单调递减区间;
(2)将函数f(x)的图象按向量
a
=(m,0)平移后得到g(x)的图象,求使函数g(x)为偶函数的m的最小正值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图F1、F2为椭圆C:
x2
a2
+
y2
b2
=1的左、右焦点,D、E是椭圆的两个顶点,椭圆的离心率e=
3
2
,SDEF2=1-
3
2
.若点M(x0,y0)在椭圆C上,则点N(
x0
a
y0
b
)称为点M的一个“椭点”,直线l与椭圆交于A、B两点,A、B两点的“椭点”分别为P、Q.
(1)求椭圆C的标准方程;
(2)问是否存在过左焦点F1,的直线l,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:2|x-1|=8.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C 所对的边分别为a、b、c,且a2+c2+ac=b2
(1)求角B的大小;
(2)若△ABC的面积为2
3
且sinA=2sinC,求a和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2-(2a+1)x+2.
(Ⅰ)若f(x)>-x-1恒成立,求a的取值范围;
(Ⅱ)当a>0时,解不等式:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
x-y+2≥0
x+2y-1≥0
2x+y-2≤0
,求Z=2x+2y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为:
x=t
y=1+2t
(t为参数),圆C的极坐标方程为ρ=2cosθ,则圆C的圆心到l的距离为
 

查看答案和解析>>

同步练习册答案