精英家教网 > 高中数学 > 题目详情
已知,讨论方程所表示的圆锥曲线类型,并求其焦点坐标
时,双曲线,焦点坐标是(0,);时,椭圆,焦点坐标是(0);时,椭圆,焦点坐标是(0,).
先把方程改写成,然后讨论;
解:当时,曲线为焦点在轴的双曲线,焦点坐标是(0,)     
时,曲线为焦点在轴的椭圆,焦点坐标是(0)
时,曲线为焦点在轴的椭圆,焦点坐标是(0,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知向量动点到定直线的距离等于并且满足其中是坐标原点,是参数.
(1)求动点的轨迹方程,并判断曲线类型;
(2)当时,求的最大值和最小值;
(3)如果动点的轨迹是圆锥曲线,其离心率满足求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆>b>的离心率为且椭圆的一个焦点与抛物线的焦点重合,斜率为的直线过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).
(1)求椭圆的标准方程;
(2)求m的取值范围;
(3)试用m表示△MPQ的面积S,并求面积S的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线上动点到定点与定直线的距离之比为常数
(1)求曲线的轨迹方程;
(2)若过点引曲线C的弦AB恰好被点平分,求弦AB所在的直线方程;
(3)以曲线的左顶点为圆心作圆,设圆与曲线交于点与点,求的最小值,并求此时圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系下,曲线 为参数),曲线为参数).若曲线有公共点,则实数的取值范围_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设平面内两定点,直线PF1PF2相交于点P,且它们的斜率之积为定值
(Ⅰ)求动点P的轨迹C1的方程;
(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交曲线C1PQ两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆(a>b>0)与双曲线有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于两点.若C1恰好将线段三等分,则
A.a2 =B.a2="13" C.b2=D.b2=2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下列3个命题:①在平面内,若动点M两点的距离之和等于2,则动点M的轨迹是椭圆;②在平面内,给出点,若动点P满足,则动点P的轨迹是双曲线;③在平面内,若动点Q到点和到直线的距离相等,则动点Q的轨迹是抛物线。其中正确的命题有(        )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
在△ABC中,顶点A(-1,0),B(1,0),动点D,E满足:
;②||=|=|③共线.
(Ⅰ)求△ABC顶点C的轨迹方程;
(Ⅱ) 若斜率为1直线l与动点C的轨迹交于M,N两点,且·=0,求直线l的方程.

查看答案和解析>>

同步练习册答案