精英家教网 > 高中数学 > 题目详情
给出下列3个命题:①在平面内,若动点M两点的距离之和等于2,则动点M的轨迹是椭圆;②在平面内,给出点,若动点P满足,则动点P的轨迹是双曲线;③在平面内,若动点Q到点和到直线的距离相等,则动点Q的轨迹是抛物线。其中正确的命题有(        )
A.0个B.1个C.2个D.3个
A
命题①中,,则点轨迹是线段,则命题①不正确;
命题②中,,则动点的轨迹是双曲线的右半支,命题②不正确;
命题③中,因为点在直线上,所以动点的轨迹为与直线垂直且过点的直线,命题③不正确。
综上可得,三个命题都不正确,故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知,讨论方程所表示的圆锥曲线类型,并求其焦点坐标

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左焦点,若椭圆上存在一点,满足以椭圆短轴为直径的圆与线段相切于线段的中点
(Ⅰ)求椭圆的方程;
(Ⅱ)已知两点及椭圆:,过点作斜率为的直线交椭圆两点,设线段的中点为,连结,试问当为何值时,直线过椭圆的顶点?
(Ⅲ) 过坐标原点的直线交椭圆:两点,其中在第一象限,过轴的垂线,垂足为,连结并延长交椭圆,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,短轴的一个端点到右焦点的距离为2,
(1)试求椭圆的方程;
(2)若斜率为的直线与椭圆交于两点,点为椭圆上一点,记直线的斜率为,直线的斜率为,试问:是否为定值?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的中心在坐标原点,其中一个焦点为圆的圆心,右顶点是圆F与x轴的一个交点.已知椭圆与直线相交于A、B两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求面积的最大值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线y=x-被椭圆x2+4y2=4截得的弦长为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线,焦点为,其准线与轴交于点;椭圆:分别以为左、右焦点,其离心率;且抛物线和椭圆的一个交点记为
(1)当时,求椭圆的标准方程;
(2)在(1)的条件下,若直线经过椭圆的右焦点,且与抛物线相交于两点,若弦长等于的周长,求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,抛物线,点上的动点,过点作抛物线的切线,交椭圆两点,
(1)当的斜率是时,求
(2)设抛物线的切线方程为,当是锐角时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知椭圆C:+=1(a>b>0)的长轴长为4.
(1)若以原点为圆心、椭圆短半轴为半径的圆与直线yx+2相切,求椭圆C的焦点坐标;
(2)若点P是椭圆C上的任意一点,过焦点的直线l与椭圆相交于MN两点,记直线PMPN的斜率分别为kPMkPN,当kPM·kPN=-时,求椭圆的方程.

查看答案和解析>>

同步练习册答案