精英家教网 > 高中数学 > 题目详情
设平面内两定点,直线PF1PF2相交于点P,且它们的斜率之积为定值
(Ⅰ)求动点P的轨迹C1的方程;
(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交曲线C1PQ两点,求面积的最大值.
1)设点P(x,y),依题意则有,整理得:
(2)设,则PQ的方程为:,联立方程组
消去y整理得:,有

代入化简得:
;当且仅当时,取到最大值。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

抛物线过焦点F的直线交抛物线于A、B两点,O为原点,若面积最小值为8。
(1)求P值
(2)过A点作抛物线的切线交y轴于N,则点M在一定直线上,试证明之。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存过点(2,1)的直线与椭圆相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在ΔABC中,顶点A,B, C所对三边分别是a,b,c已知B(-1, 0), C(1, 0),且b,a, c成等差数列.
(I )求顶点A的轨迹方程;
(II) 设顶点A的轨迹与直线y=kx+m相交于不同的两点M、N,如果存在过点P(0,-)的直线l,使得点M、N关于l对称,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,讨论方程所表示的圆锥曲线类型,并求其焦点坐标

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线,点关于轴的对称点为,直线过点交抛物线于两点.
(1)证明:直线的斜率互为相反数; 
(2)求面积的最小值;
(3)当点的坐标为.根据(1)(2)推测并回答下列问题(不必说明理由):①直线的斜率是否互为相反数? ②面积的最小值是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆内有圆,如果圆的切线与椭圆交A、B两点,且满足(其中为坐标原点).
(1)求证:为定值;
(2)若达到最小值,求此时的椭圆方程;
(3)在满足条件(2)的椭圆上是否存在点P,使得从P向圆所引的两条切线互相垂直,如果存在,求出点的坐标,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的中心在坐标原点,其中一个焦点为圆的圆心,右顶点是圆F与x轴的一个交点.已知椭圆与直线相交于A、B两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求面积的最大值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y=x2-x与x轴围成的图形的面积为
A.B.1C.D.

查看答案和解析>>

同步练习册答案