精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=lg(2-x)-lg(2+x).
(1)判断函数f(x)的奇偶性;
(2)用定义判断函数的单调性.

分析 (1)根据函数f(x)的奇偶性的定义,结合已知中f(x)=lg(2-x)-lg(2+x)可得结论;
(2)设x1,x2∈(-2,2)且x1<x2,利用作差法判断出$\frac{2-{x}_{1}}{2+{x}_{1}}$>$\frac{2-{x}_{2}}{2+{x}_{2}}$,结合对数函数的单调性可得结论.

解答 解:(1)由题意,得$\left\{\begin{array}{l}2-x>0\\ 2+x>0\end{array}\right.$,解得-2<x<2,
∴f(x)的定义域为(-2,2)关于原点对称.
又∵f(-x)=lg(2+x)-lg(2-x)=-f(x),
∴f(x)为奇函数.
(2)f(x)=lg(2-x)-lg(2+x)=lg$\frac{2-x}{2+x}$.
设x1,x2∈(-2,2)且x1<x2
∴x2-x1>0,2+x1>0,2+x2>0,
∴$\frac{2-{x}_{1}}{2+{x}_{1}}$-$\frac{2-{x}_{2}}{2+{x}_{2}}$=$\frac{4({x}_{2}-{x}_{1})}{(2+{x}_{1})(2+{x}_{2})}$>0
即$\frac{2-{x}_{1}}{2+{x}_{1}}$>$\frac{2-{x}_{2}}{2+{x}_{2}}$,
∴lg$\frac{2-{x}_{1}}{2+{x}_{1}}$>lg$\frac{2-{x}_{2}}{2+{x}_{2}}$,
即f(x1)>f(x2),
∴f(x)=lg(2-x)-lg(2+x)在(-2,2)内单调递减.

点评 判断函数奇偶性,必须先求出定义域,单调性的判断在定义域内用定义判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设线性方程组的增广矩阵为$(\begin{array}{l}{2}&{3}&{{t}_{1}}\\{0}&{1}&{{t}_{2}}\end{array})$,解为$\left\{\begin{array}{l}{x=3}\\{y=5}\end{array}\right.$,则三阶行列式$[\begin{array}{l}{1}&{-1}&{{t}_{1}}\\{0}&{1}&{-1}\\{-1}&{{t}_{2}}&{-6}\end{array}]$的值为19.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.极坐标方程ρcos(θ+$\frac{π}{3}$)=7与方程2ρsin(θ-$\frac{π}{6}$)=29的两图形的位置关系为(  )
A.平行B.垂直C.斜交D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在极坐际系内,点(3,$\frac{π}{2}$)关于直线θ=$\frac{π}{6}$(ρ∈R)的对称点的坐标为(  )
A.(3,0)B.(3,$\frac{π}{2}$)C.(-3,$\frac{2π}{3}$)D.(3,$\frac{11π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=log2$\frac{x+1}{x-1}$+log2(x-1)+log2(p-x)
(1)求f(x)的定义域;
(2)若函数f(x)的值域为(-∞,log2$\frac{(p+1)^{2}}{4}$],求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,已知AB,AC是圆的两条弦,过B作圆的切线与AC的延长线相交于D.过点C作BD的平行线与AB相交于点E,AE=3,BE=1,则BC的长为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={a,a+d,a+2d},B={a,aq,aq2}(a为已知常量)并且A=B,求d、q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线x+y=k(k>0)与圆x2+y2=4交于A,B两点,若|$\overrightarrow{AB}$|=|$\overrightarrow{OA}$+$\overrightarrow{OB}$|(O为原点),那么(  )
A.k=2B.k=2$\sqrt{2}$C.k=$\sqrt{2}$D.k=4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=sinxcos($\frac{3}{2}$π+x)+$\sqrt{3}$cosxsin(π+x)+sin($\frac{π}{2}$+x)cosx.
(1)求f(x)的最小正周期;
(2)当x为何值时,f(x)有最大值?

查看答案和解析>>

同步练习册答案