| A. | k=2 | B. | k=2$\sqrt{2}$ | C. | k=$\sqrt{2}$ | D. | k=4 |
分析 利用|$\overrightarrow{AB}$|=|$\overrightarrow{OA}$+$\overrightarrow{OB}$|,可得OA⊥OB,OA=OB,可得出三角形AOB为等腰直角三角形,由圆的标准方程得到圆心坐标与半径R,可得出AB,求出AB的长,圆心到直线y=-x+k的距离为AB的一半,利用点到直线的距离公式列出关于k的方程,求出方程的解即可得到实数k的值.
解答 解:∵|$\overrightarrow{AB}$|=|$\overrightarrow{OA}$+$\overrightarrow{OB}$|,
∴OA⊥OB,OA=OB,
∴△AOB为等腰直角三角形,
又圆心坐标为(0,0),半径R=2,
∴AB=$\sqrt{2}$R=2$\sqrt{2}$,
∴圆心到直线y=-x+k的距离d=$\frac{1}{2}$AB=$\frac{|k|}{\sqrt{2}}$=$\sqrt{2}$,
∴|k|=2,
∵k>0
∴k=2.
故选:A.
点评 此题考查了直线与圆相交的性质,涉及的知识有:等腰直角三角形的判定与性质,以及点到直线的距离公式,其中根据题意得出△AOB为等腰直角三角形是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com