精英家教网 > 高中数学 > 题目详情
9.已知圆心为C的圆经过点(1,1),(2,-2),且圆心C在直线l:x-y+1=0上,
(1)求圆C的方程;
(2)过A(1,0)的直线交圆C于E、F两点,求弦EF中点M的轨迹方程.

分析 (1)求出线段PQ的垂直平分线的方程,确定圆心坐标与半径,写出圆的方程即可.
(2)分类讨论,利用CM⊥CM⊥AM,可求弦EF中点M的轨迹方程.

解答 解:(1)∵P(1,1),Q(2,-2),
∴${k_{PQ}}=\frac{-2-1}{2-1}=-3$且PQ的中点$(\frac{3}{2},-\frac{1}{2})$,
因此线段PQ的垂直平分线的方程为$y+\frac{1}{2}=\frac{1}{3}(x-\frac{3}{2})$,即x-3y-3=0,
圆心C的坐标是方程组$\left\{{\begin{array}{l}{x-3y-3=0}\\{x-y+1=0}\end{array}}\right.$的解,解得C(-3,-2),r2=|PC|2=25.
∴圆C的方程为(x+3)2+(y+2)2=25.
(2)由题知,当M不与A、C重合时,CM⊥AM,则M在以AC为直径的圆上; 
当M与A、C重合时,显然在以AC为直径的圆上.
因为 A(1,0),C(-3,-2),所以M点的轨迹方程为(x-1)[x-(-3)]+(y-0)[y-(-2)]=0,
整理得(x+1)2+(y+1)2=5.

点评 此题是一道综合题,要求学生会根据圆心和半径写出圆的方程,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知正方体ABCD-A1B1C1D1的棱长为3,E为CD的中点,则点D1到平面AEC1的距离为(  )
A.$\sqrt{6}$B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在极坐际系内,点(3,$\frac{π}{2}$)关于直线θ=$\frac{π}{6}$(ρ∈R)的对称点的坐标为(  )
A.(3,0)B.(3,$\frac{π}{2}$)C.(-3,$\frac{2π}{3}$)D.(3,$\frac{11π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,已知AB,AC是圆的两条弦,过B作圆的切线与AC的延长线相交于D.过点C作BD的平行线与AB相交于点E,AE=3,BE=1,则BC的长为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={a,a+d,a+2d},B={a,aq,aq2}(a为已知常量)并且A=B,求d、q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,设圆O1与O2的半径分别为3和2,O1O2=4,A,B为两圆的交点,试求两圆的公共弦AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线x+y=k(k>0)与圆x2+y2=4交于A,B两点,若|$\overrightarrow{AB}$|=|$\overrightarrow{OA}$+$\overrightarrow{OB}$|(O为原点),那么(  )
A.k=2B.k=2$\sqrt{2}$C.k=$\sqrt{2}$D.k=4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|2x-a|+a.
(I)当a=2时,求不等式f(x)≤4的解集;
(II)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,已知ABC-A1B1C1是所有棱长均相等的正三棱柱,点E是棱AB的中点,点F是棱B1C1的中点,点M是棱AA1上的动点,则二面角B1-EM-F的正切值不可能等于(  )
A.$\frac{\sqrt{15}}{6}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{5}}{4}$

查看答案和解析>>

同步练习册答案