精英家教网 > 高中数学 > 题目详情
6.已知圆O:x2+y2=r2(r>0),与y轴交于M、N两点且M在N的上方.且直线y=2x+$\sqrt{5}$与圆O相切.
(1)求实数r的值;   
(2)若动点P满足PM=$\sqrt{3}$PN,求△PMN面积的最大值.

分析 (1)求出圆的圆心,利用直线y=2x+$\sqrt{5}$与圆O相切,圆心O(0,0)到直线y=2x+$\sqrt{5}$的距离为半径,求解即可.
(2)设点P(x,y),点M(0,1),N(0,-1);MN=2,利用PM=$\sqrt{3}$PN,推出点P在圆心为(0,-2),半径为$\sqrt{3}$的圆上,求出点P到y轴的距离最大值为$\sqrt{3}$,然后求解△PMN面积的最大值.

解答 解:(1)∵直线y=2x+$\sqrt{5}$与圆O相切
∴圆心O(0,0)到直线y=2x+$\sqrt{5}$的距离为:d=$\frac{\sqrt{5}}{\sqrt{5}}$=1,∴r=1.-------------------------------(4分)
(2)设点P(x,y),点M(0,1),N(0,-1);MN=2
∵PM=$\sqrt{3}$PN.∴x2+(y-1)2=3x2+3(y+1)2,即x2+y2+4y+1=0-----------------------(8分)
∴点P在圆心为(0,-2),半径为$\sqrt{3}$的圆上,∴点P到y轴的距离最大值为$\sqrt{3}$
∴△PMN面积的最大值为:$\frac{1}{2}×2×\sqrt{3}$=$\sqrt{3}$.---------------------------------------------------------------(12分).

点评 本题考查直线与圆的位置关系的综合应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设在直三棱锥ABC-A1B1C1中,AB=AC=AA1=2,∠BAC=90°,E,F依次为CC1,BC的中点.
(1)求异面直线A1B与EF所成角θ的大小;
(2)求直线EF与平面ABC所成角大小;
(3)求点C到平面AEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,已知AB,AC是圆的两条弦,过B作圆的切线与AC的延长线相交于D.过点C作BD的平行线与AB相交于点E,AE=3,BE=1,则BC的长为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,设圆O1与O2的半径分别为3和2,O1O2=4,A,B为两圆的交点,试求两圆的公共弦AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线x+y=k(k>0)与圆x2+y2=4交于A,B两点,若|$\overrightarrow{AB}$|=|$\overrightarrow{OA}$+$\overrightarrow{OB}$|(O为原点),那么(  )
A.k=2B.k=2$\sqrt{2}$C.k=$\sqrt{2}$D.k=4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设点M(1,m),若在圆O:x2+y2=1上存在一点N,使得∠OMN=30°,则实数m的取值范围是[-$\sqrt{3}$,$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|2x-a|+a.
(I)当a=2时,求不等式f(x)≤4的解集;
(II)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱锥V-ABC中,VA=VB=VC=2$\sqrt{3}$,∠AVB=∠BVC=∠CVA=40°,过A作截面AEF分别交VB,VC于点E,F,求△AEF周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.矩形ABCD在平面α内,F是平面α外一点,FD⊥DA,FD⊥DC,FD=8cm,AB=8cm,BC=6cm,求线段FA、FC和FB的长.

查看答案和解析>>

同步练习册答案