精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=sinxcos($\frac{3}{2}$π+x)+$\sqrt{3}$cosxsin(π+x)+sin($\frac{π}{2}$+x)cosx.
(1)求f(x)的最小正周期;
(2)当x为何值时,f(x)有最大值?

分析 利用诱导公式与二倍角公式化简.
(1)直接利用周期公式求得周期;
(2)由2x的终边在y轴负半轴上列式求得使f(x)取最大值的x值.

解答 解:∵f(x)=sinxcos($\frac{3}{2}$π+x)+$\sqrt{3}$cosxsin(π+x)+sin($\frac{π}{2}$+x)cosx
=sin2x$-\sqrt{3}sinxcosx$+cos2x=1$-\frac{\sqrt{3}}{2}sin2x$.
(1)f(x)的最小正周期T=$\frac{2π}{2}=π$;
(2)当sin2x=-1,即2x=-$\frac{π}{2}+2kπ$,x=$-\frac{π}{4}+kπ,k∈Z$时,
f(x)有最大值1+$\frac{\sqrt{3}}{2}$.

点评 本题考查三角函数中的恒等变换应用,考查了y=Asin(ωx+φ)型函数的图象和性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lg(2-x)-lg(2+x).
(1)判断函数f(x)的奇偶性;
(2)用定义判断函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知矩阵$[\begin{array}{l}{a}&{3}\\{1}&{a}\end{array}]$的逆矩阵是$[\begin{array}{l}{a}&{-3}\\{-1}&{a}\end{array}]$,则正实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a∈R,函数f(x)=log2($\frac{1}{x}$+a),若关于x的方程f(x)-log2[(a-4)x+2a-5]=0的解集中恰有一个元素,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\vec a$=(4,2),$\vec b$=(6,y),且$\vec a$⊥$\vec b$,则y的值为(  )
A.-12B.-3C.3D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的通项公式为an=n2-2n,则a4=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.给定两个命题:p:对任意实数x,都有ax2+ax+1>0恒成立,q:函数y=3x-a在x∈[0,2]上有零点,如果(¬p)∧q为假命题,¬q为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和Sn=$|\begin{array}{l}{\frac{π}{6}}&{0}&{\frac{π}{12}}\\{0}&{n}&{0}\\{-1}&{0}&{n}\end{array}|$
(1)求通项公式an
(2)设bn=$\frac{πn}{12{S}_{n}}$,设cn=$|\begin{array}{l}{{b}_{n}}&{1}\\{1}&{{b}_{n+1}}\end{array}|$,求数列{cn}的前n项和Tn及$\underset{lim}{n→∞}$$\frac{{T}_{n}}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.点(2,-2)的极坐标为$(2\sqrt{2},\frac{7π}{4})$(ρ>0,0≤θ<2π).

查看答案和解析>>

同步练习册答案