精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的前n项和Sn=(
1
2
n+a,则a的值(  )
A、-1
B、1
C、-
1
2
D、
1
2
考点:等比数列的前n项和
专题:等差数列与等比数列
分析:由等比数列的前n项和求得数列前三项,然后利用等比数列的性质列式求得a的值.
解答: 解:∵数列{an}是等比数列,且其前n项和Sn=(
1
2
n+a,
a1=S1=
1
2
+a

a2=S2-S1=(
1
2
)2+a-
1
2
-a=-
1
4

a3=S3-S2=(
1
2
)3+a-(
1
2
)2-a=-
1
8

(-
1
4
)2=-
1
8
(
1
2
+a)
,解得:a=-1.
故选:A.
点评:本题考查了等比数列的前n项和,考查了等比数列的性质,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα-cosα=
1
3
,则tanα+
1
tanα
=(  )
A、
8
9
B、
7
3
C、
9
4
D、
11
4

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
e2
1
3
x
dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD,底面是边长为a的正方形,PD⊥底面ABCD,PD=DC,E、F分别是AB、PB的中点,
(1)PB与CD所成的角的正弦值;
(2)DB与平面DEF所成的面的余弦值;
(3)点B到平面DEF的距离;
(4)二面角F-DE-B的大小的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:(k-3)x+(4-k)y+1=0与直线l2:2(k-3)x-2y+3平行,则k为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+ax+b=x}={a},幂函数f(x)经过点(a,b),
(Ⅰ)求集合A;
(Ⅱ)求不等式f(x)≤x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cosωx•(cosωx+
3
sinwx),其中ω>0,又函数f(x)的图象的任意两中心对称点间的最小距离为
2

(1)求ω的值;
(2)设α是第一象限角,且f(
2
+
π
2
)=
23
26
,求
sin(α+
π
4
)
cos(4π+2α)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在双曲线
x2
25
-
y2
9
=1上求一点,使它到直线l:x-y-3=0的距离最短,并求最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是直角梯形,AD∥BC,∠BAD=90°,PA⊥平面ABCD,且PA=AD=AB=1.
(1)若BC=3,求异面直线PC与BD所成角的余弦值;
(2)若BC=2,求证:平面BPC⊥平面PCD;
(3)设E为PC的中点,在线段BC上是否存在一点F,使得EF⊥CD?请说明理由.

查看答案和解析>>

同步练习册答案