精英家教网 > 高中数学 > 题目详情
2.若向量$\overrightarrow{AB}$=(2,4),$\overrightarrow{BC}$=(-2,2n),$\overrightarrow{AC}$=(m,2),m,n∈R,则m+n的值为(  )
A.-2B.-1C.0D.1

分析 利用$\overrightarrow{AC}$=$\overrightarrow{AB}+\overrightarrow{BC}$即可得出.

解答 解:∵$\overrightarrow{AC}$=$\overrightarrow{AB}+\overrightarrow{BC}$,
∴(m,2)=(2,4)+(-2,2n),
可得:m=2-2=0,2=4+2n,解得n=-1.
∴m+n=-1.
故选:B.

点评 本题考查了向量三角形法则、向量相等,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.同时抛掷两颗均匀的骰子,请回答以下问题:
(1)求两个骰子都出现2点的概率;
(2)若同时抛掷两颗骰子180次,其中甲骰子出现20次2点,乙骰子出现30次2点,问两颗骰子出现2点是否相关?(χ2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{n}_{+1}{n}_{+2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列选项中是正确的赋值语句的是(  )
A.4=iB.B=A=3C.x+y=0D.i=1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知tanα=3,求$\frac{2sinα+3cosα}{3sinα-2cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=x+$\frac{1}{x}$的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$α∈(-π,-\frac{π}{2}),tanα=\frac{3}{4}$,则$cos(\frac{3π}{2}-α)+2{sin^2}\frac{α}{2}$=(  )
A.$\frac{6}{5}$B.$\frac{12}{5}$C.1D.$-\frac{2}{5}$或$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{BC}$=-4$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{CD}$=-5$\overrightarrow{a}$-3$\overrightarrow{b}$,其中$\overrightarrow{a}$,$\overrightarrow{b}$不共线,则四边形ABCD为(  )
A.平行四边形B.矩形C.梯形D.菱形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.现从4名男生和5名女生中任选取3人,若必须有男有女,则不同的选法共有(  )
A.140种B.80种C.70种D.35种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,三边之比a:b:c=3:5:7,则角C=(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案