精英家教网 > 高中数学 > 题目详情
14.在四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{BC}$=-4$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{CD}$=-5$\overrightarrow{a}$-3$\overrightarrow{b}$,其中$\overrightarrow{a}$,$\overrightarrow{b}$不共线,则四边形ABCD为(  )
A.平行四边形B.矩形C.梯形D.菱形

分析 求出$\overrightarrow{AD}$=$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}$=2$\overrightarrow{BC}$,从而四边形ABCD为梯形.

解答 解:在四边形ABCD中,
∵$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{BC}$=-4$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{CD}$=-5$\overrightarrow{a}$-3$\overrightarrow{b}$,其中$\overrightarrow{a}$,$\overrightarrow{b}$不共线,
∴$\overrightarrow{AD}$=$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}$
=$\overrightarrow{a}+2\overrightarrow{b}-4\overrightarrow{a}-\overrightarrow{b}-5\overrightarrow{a}-3\overrightarrow{b}$
=-8$\overrightarrow{a}$-2$\overrightarrow{b}$
=2$\overrightarrow{BC}$.
∴四边形ABCD为梯形.
故选:C.

点评 本题考查四边形形状的判断,考查平面向量加法法则、向量平行等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.抛物线y2=8x的焦点为F,在该抛物线上存在一组点列P1(x1,y1),P2(x2,y2)…P1(x2017,y2017),使得|P1F|+|P2F|+…+|P2017F|=6051,则y12+y22+…+y20172=(  )
A.10085B.16128C.12102D.16136

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列命题中:
①若$\vec a$与$\vec b$互为相反向量,则$|{\vec a}|=|{\vec b}|$;
②若$|{\vec a}|=1$,则$\vec a=±1$;  
③若$\vec a•\vec b=0$,则$\vec a=\vec 0$或$\vec b=\vec 0$;
④若$\vec a•\vec c=\vec b•\vec c$,且$\vec c≠\vec 0$,则$\vec a=\vec b$.   其中假命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若向量$\overrightarrow{AB}$=(2,4),$\overrightarrow{BC}$=(-2,2n),$\overrightarrow{AC}$=(m,2),m,n∈R,则m+n的值为(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数$f(x)=tan(2x+\frac{π}{6})-1$在(0,π)上的零点是$\frac{π}{24}$或$\frac{13π}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知log27=a,log32=b,用a,b表示log2863=$\frac{ab+2}{ab+2b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱椎P-ABCD中,底面ABCD为矩形,平面PCD⊥面ABCD,BC=1,AB=2,PC=$PD=\sqrt{2}$,E为PA中点.
(1)求证:PC∥平面BED;
(2)求三棱锥E-PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为9ρ2cos2θ+16ρ2sin2θ=144,且直线l与曲线C交于P,Q两点.
(Ⅰ)求曲线C的直角坐标方程及直线l恒过的顶点A的坐标;
(Ⅱ)在(Ⅰ)的条件下,若|AP|•|AQ|=9,求直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知角α的终边上一点的坐标为(-5,12),则sinα=$\frac{12}{13}$.

查看答案和解析>>

同步练习册答案