精英家教网 > 高中数学 > 题目详情
12.在△ABC中,三边之比a:b:c=3:5:7,则角C=(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

分析 由已知不妨设a=3x,b=5x,c=7x,x>0,利用余弦定理可求cosC=-$\frac{1}{2}$,结合范围C∈(0,π),从而由特殊角的三角函数值即可得解C的值.

解答 解:∵△ABC中,已知a:b:c=3:5:7,不妨设a=3x,b=5x,c=7x,x>0,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{9{x}^{2}+25{x}^{2}-49{x}^{2}}{2×3x×5x}$=-$\frac{1}{2}$,
∵C∈(0,π),
∴C=$\frac{2π}{3}$.
故选:B.

点评 本题主要考查余弦定理的应用,根据三角函数的值求角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若向量$\overrightarrow{AB}$=(2,4),$\overrightarrow{BC}$=(-2,2n),$\overrightarrow{AC}$=(m,2),m,n∈R,则m+n的值为(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为9ρ2cos2θ+16ρ2sin2θ=144,且直线l与曲线C交于P,Q两点.
(Ⅰ)求曲线C的直角坐标方程及直线l恒过的顶点A的坐标;
(Ⅱ)在(Ⅰ)的条件下,若|AP|•|AQ|=9,求直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.用0、1、2、3、4这5个数字,组成无重复数字的五位数,其中偶数有(  )
A.36个B.72个C.48个D.60个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p:?x,y∈Z,x2+y2=2015,则?p为(  )
A.?x,y∈Z,x2+y2≠2015B.?x,y∈Z,x2+y2≠2015
C.?x,y∈Z,x2+y2=2015D.不存在x,y∈Z,x2+y2=2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等比数列{an}的前n项和为Sn,且a1,2a2,4a3成等差数列.若a1=8,则S4=(  )
A.15B.120C.35D.44

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知角α的终边上一点的坐标为(-5,12),则sinα=$\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a>0,b>0,若直线l1:x+a2y+2=0与直线l2:(a2+1)x-by+3=0互相垂直,则ab的最小值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某球星在三分球大赛中命中率为$\frac{1}{2}$,假设三分球大赛中总计投出8球,投中一球得3分,投丢一球扣一分,则该球星得分的期望与方差分别为(  )
A.16,32B.8,32C.8,8D.32,32

查看答案和解析>>

同步练习册答案