精英家教网 > 高中数学 > 题目详情
13.已知等比数列{an}的前n项和是Sn,且S20=21,S30=49,则S10为(  )
A.7B.9C.63D.7或63

分析 由等比数列的求和公式,结合条件,求出q10=2,$\frac{{a}_{1}}{1-q}$=-7,代入可求S10

解答 解:由题意S20=$\frac{{a}_{1}(1-{q}^{20})}{1-q}$=21,S30=$\frac{{a}_{1}(1-{q}^{30})}{1-q}$=49,
∴q10=2,$\frac{{a}_{1}}{1-q}$=-7
∴S10=$\frac{{a}_{1}}{1-q}$(1-q10)=7
故选:A.

点评 本题主要考查了等比数列的求和公式,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知M(0,-$\sqrt{3}$),N(0,$\sqrt{3}$),平面内一动点P满足|PM|+|PN|=4,记动点P的轨迹为E.
(1)求轨迹E的方程;
(2)设直线l1:y=k1x+1与轨迹E交于A、B两点,若在y轴上存在一点Q,使y轴为∠AQB的角平分线,求Q点坐标.
(3)是否存在不过T(0,1)且不垂直于坐标轴的直线l2与轨迹E及圆T:x2+(y-1)2=9从左到右依次交于C,D,F,G四点,且$\overrightarrow{TD}$-$\overrightarrow{TC}$=$\overrightarrow{TG}$-$\overrightarrow{TF}$?若存在,求l2的斜率的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆的焦点在x轴上,且椭圆的左焦点F1将长轴分成的两条线段的比为1:2,焦距为2,过右焦点F2的直线的倾斜角为45°,交椭圆于A,B两点.求:
(1)椭圆的标准方程;
(2)直线与圆的相交弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C的中心在原点,焦点在x轴上,长轴长为2$\sqrt{5}$,它的一个顶点恰好是抛物线x2=4y的焦点.
(I)求椭圆C的标准方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于A,B两点,交y轴于M点,若$\overrightarrow{MA}$-λ1$\overrightarrow{AF}$=$\overrightarrow{0}$,$\overrightarrow{MB}$-λ2$\overrightarrow{BF}$=$\overrightarrow{0}$,求证:$\frac{1}{2}$(λ12)为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C2:x2=2py(p>0)的通径长为4,椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过抛物线C2的焦点.
(1)求抛物线C2和椭圆C1的方程;
(2)已知圆M过定点D(0,2),圆心M在C2轨迹上运动,且圆M与x轴交于A、B两点,设|DA|=m,|DB|=n,求$\frac{m}{n}+\frac{n}{m}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\frac{1}{{3}^{x}+1}$,则f(log23)+f(log4$\frac{1}{9}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点P为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上的一点,点F1,F2分别为双曲线的左、右焦点,双曲线的一条渐近线的斜率为$\sqrt{7}$,若M为△PF1F2的内心,且S${\;}_{△PM{F}_{1}}$=S${\;}_{△PM{F}_{2}}$+λS${\;}_{△M{F}_{1}{F}_{2}}$成立,则λ的值为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且椭圆经过点(-2,0).
(1)求椭圆C的方程;
(2)过原点的直线与椭圆C交于A、B两点(A,B不是椭圆C的顶点),点D在椭圆C上,且AD⊥AB,直线BD与x轴y轴分别交于M,N两点,设直线BD,AM斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.曲线f(x)=xlnx在点P(1,0)处的切线l与坐标轴围成的三角形的外接圆方程是$(x-\frac{1}{2})^{2}+(y-\frac{1}{2})^{2}=\frac{1}{2}$.

查看答案和解析>>

同步练习册答案