分析 根据三角形的面积公式以及三角形的面积公式,建立方程关系,结合双曲线的渐近线斜率以及a,b,c的关系进行求解即可.
解答
解:设内切圆的半径为R,
∵S${\;}_{△PM{F}_{1}}$=S${\;}_{△PM{F}_{2}}$+λS${\;}_{△M{F}_{1}{F}_{2}}$成立,
∴S${\;}_{△PM{F}_{1}}$-S${\;}_{△PM{F}_{2}}$=λS${\;}_{△M{F}_{1}{F}_{2}}$成立,
即$\frac{1}{2}$|PF1|•R-$\frac{1}{2}$|PF2|•R=$\frac{1}{2}$•λ|P1P2|•R,
即$\frac{1}{2}$×2a•R=$\frac{1}{2}$•λ•2c•R,
∴a=λc,
∵双曲线的一条渐近线的斜率为$\sqrt{7}$,
∴$\frac{b}{a}$=$\sqrt{7}$,即b=$\sqrt{7}$a=λ$\sqrt{7}$c,
∵a2+b2=c2,
∴λ2c2+7λ2c2=c2,
即8λ2=1,即λ2=$\frac{1}{8}$,
得λ=$\frac{\sqrt{2}}{4}$,
故答案为:$\frac{\sqrt{2}}{4}$
点评 本题主要考查双曲线性质的应用,根据三角形的面积公式,建立方程关系是解决本题的关键.考查学生的运算和转化能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{4}$-y2=1 | B. | x2-$\frac{y^2}{4}$=1 | C. | $\frac{x^2}{5}$-$\frac{y^2}{4}$=1 | D. | 5x2-$\frac{{5{y^2}}}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{8}{3}$ | B. | -3 | C. | -6 | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 970 | B. | 1030 | C. | 997 | D. | 206 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 64 | B. | 32 | C. | 2$\sqrt{2}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com