精英家教网 > 高中数学 > 题目详情
5.已知点P为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上的一点,点F1,F2分别为双曲线的左、右焦点,双曲线的一条渐近线的斜率为$\sqrt{7}$,若M为△PF1F2的内心,且S${\;}_{△PM{F}_{1}}$=S${\;}_{△PM{F}_{2}}$+λS${\;}_{△M{F}_{1}{F}_{2}}$成立,则λ的值为$\frac{\sqrt{2}}{4}$.

分析 根据三角形的面积公式以及三角形的面积公式,建立方程关系,结合双曲线的渐近线斜率以及a,b,c的关系进行求解即可.

解答 解:设内切圆的半径为R,
∵S${\;}_{△PM{F}_{1}}$=S${\;}_{△PM{F}_{2}}$+λS${\;}_{△M{F}_{1}{F}_{2}}$成立,
∴S${\;}_{△PM{F}_{1}}$-S${\;}_{△PM{F}_{2}}$=λS${\;}_{△M{F}_{1}{F}_{2}}$成立,
即$\frac{1}{2}$|PF1|•R-$\frac{1}{2}$|PF2|•R=$\frac{1}{2}$•λ|P1P2|•R,
即$\frac{1}{2}$×2a•R=$\frac{1}{2}$•λ•2c•R,
∴a=λc,
∵双曲线的一条渐近线的斜率为$\sqrt{7}$,
∴$\frac{b}{a}$=$\sqrt{7}$,即b=$\sqrt{7}$a=λ$\sqrt{7}$c,
∵a2+b2=c2
∴λ2c2+7λ2c2=c2
即8λ2=1,即λ2=$\frac{1}{8}$,
得λ=$\frac{\sqrt{2}}{4}$,
故答案为:$\frac{\sqrt{2}}{4}$

点评 本题主要考查双曲线性质的应用,根据三角形的面积公式,建立方程关系是解决本题的关键.考查学生的运算和转化能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.f(x)=mx2-m2lnx+x,
(Ⅰ)若函数f(x)在x=1处取得极小值,求m的值:
(Ⅱ)求函数f(x)的单调区间:
(Ⅲ)当m>0,x∈[${\frac{1}{e}$,+∞)时,曲线y=f(x)上总存在经过原点的切线.试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线的一个顶点与抛物线y2=4x的焦点重合,且双曲线的离心率等于$\sqrt{5}$,则该双曲线的方程为(  )
A.$\frac{x^2}{4}$-y2=1B.x2-$\frac{y^2}{4}$=1C.$\frac{x^2}{5}$-$\frac{y^2}{4}$=1D.5x2-$\frac{{5{y^2}}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等比数列{an}的前n项和是Sn,且S20=21,S30=49,则S10为(  )
A.7B.9C.63D.7或63

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在平面直角坐标系xOy,已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的半焦距为c,且过点($\sqrt{3}$,$\frac{1}{2}$),原点O到经过两点(c,0),(0,b)的直线的距离为$\frac{1}{2}$c.
(Ⅰ)求椭圆E的方程;
(Ⅱ)A为椭圆E上异于顶点的一点,点P满足$\overrightarrow{OP}$=λ$\overrightarrow{AO}$,过点P的直线交椭圆E于B、C两点,且$\overrightarrow{BP}$=$μ\overrightarrow{BC}$,若直线OA,OB的斜率之积为-$\frac{1}{4}$,求证:λ2=2μ-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在平行四边形ABCD中,AB=4,AD=3,∠DAB=$\frac{π}{3}$,点E,F分别在BC,DC边上,且$\overrightarrow{BE}$=2$\overrightarrow{EC}$,$\overrightarrow{DF}$=$\overrightarrow{FC}$,则$\overrightarrow{AE}$•$\overrightarrow{EF}$=(  )
A.-$\frac{8}{3}$B.-3C.-6D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.市疾病控制中心今日对我校高二学生进行了某项健康调查,调查的方法是采取分层抽样的方法抽取样本.我校高二学生共有2000人,抽取了一人200人的样本,样本中男生103人,请问我校共有女生(  )
A.970B.1030C.997D.206

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设实数x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x≥y}\\{2x-y≤1}\end{array}\right.$,则23x+2y的最大值是(  )
A.64B.32C.2$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知随机变量X~N(2,σ2),P(X≤4)=0.8,那么P(X≤0)的值为(  )
A.0.2B.0.32C.0.4D.0.8

查看答案和解析>>

同步练习册答案