分析 (Ⅰ)求出函数的导数,得到f′(1)=0,求出m的值;(Ⅱ)求出函数f(x)导数,通过讨论m的范围,求出函数的单调区间即可;
(Ⅲ)问题转化为求g(x)=x2+mlnx-m的最小值,从而求出m的范围即可.
解答 解:(Ⅰ)f′(x)=$\frac{2{mx}^{2}+x{-m}^{2}}{x}$,(x>0),
∵函数f(x)在x=1处取得极小值,∴f′(1)=0,解得:m=1±$\sqrt{2}$,
经检验m=1+$\sqrt{2}$时,函数f(x)在x=1处取得极小值,
故m=1+$\sqrt{2}$;
(Ⅱ)令f′(x)=0,即2mx2+x-m2=0,(x>0),
①当m=0时,f′(x)>0,f(x)在(0,+∞)递增,
②m>0时,△=1+8m3>0,
故x1=$\frac{-1-\sqrt{1+{8m}^{3}}}{4m}$,x2=$\frac{-1+\sqrt{1+{8m}^{2}}}{4m}$,且x1<0<x2,
∴f(x)在(0,$\frac{-1+\sqrt{1+{8m}^{2}}}{4m}$)递增,在($\frac{-1+\sqrt{1+{8m}^{2}}}{4m}$,+∞)递减,
③-$\frac{1}{2}$<m<0时,△=1+8m3>0,由x1+x2>0,x1•x2>0,得:x1>x2>0,
∴f(x)在区间(0,$\frac{-1+\sqrt{1+{8m}^{2}}}{4m}$),($\frac{-1-\sqrt{1+{8m}^{3}}}{4m}$,+∞)递减,
在($\frac{-1+\sqrt{1+{8m}^{2}}}{4m}$,$\frac{-1-\sqrt{1+{8m}^{3}}}{4m}$)递增,
④m≤-$\frac{1}{2}$时,△≤0,f′(x)≤0,f(x)在(0,+∞)递减;
(Ⅲ)由题意,方程$\frac{f(x)}{x}$=f′(x)在[$\frac{1}{e}$,+∞)有解,
即方程$\frac{{mx}^{2}{-m}^{2}lnx+x}{x}$=$\frac{2{mx}^{2}+x{-m}^{2}}{x}$有解,(x≥$\frac{1}{e}$),
整理得:x2+mlnx-m=0,
设g(x)=x2+mlnx-m,(x≥$\frac{1}{e}$),g′(x)=2x+$\frac{m}{x}$>0,
∴g(x)在[$\frac{1}{e}$,+∞)递增,g(x)min=g($\frac{1}{e}$)=$\frac{1}{{e}^{2}}$-2m,
∵g(e)=e2>0,∴只需$\frac{1}{{e}^{2}}$-2m≤0,
∴m≥$\frac{1}{{2e}^{2}}$.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道综合题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com